Things You Should Know

25 Lessons I've Learned About Selecting
Content Technology and Services

Copyright 2020, by Deane Barker

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Things You Should Know

Table of Contents

N

© ® N o o bk~ w

10.

1.
12.

13.

About the AULNOToceiii e 1
INtrOAUCHION ..o 2
Applicability to Software Genrescccceeiieiiiiiiic e 8
. There is usually a familiar roster of playerscccccoeiiiiiiiiiinenn. 9
There is no “soulmate” for your project, and all that glitters will
eventually lose its Shineccccooiiiiiii e, 13
Sometimes you just can’t estimate ROl on your project 18
Software usually has to fit into larger technology landscapes 24
Internal IT groups can be territorial for a variety of reasons 28
The relationship dynamics between the players are different 31
There can be a blurry line between software and services 35
Open-source software often has no representation 39
There’s sometimes tension between the vendor and their partner
1] (=T | = o] SRR 42
The most thorough selection processes are a funnel of deepening
ANAIYSIS ..t 47
A vendor’s ecosystem should be evaluated as a core feature 51

A Request for Proposal can sometimes be abusive and this doesn’t
NEIP ANYONE ..o 56

Know your budget target in advance and be prepared to share it .59

14.
15.
16.

17.
18.

19.
20.
21.

22.

23.
24.

25.

If you don’t know how to write an RFP, get helpccccceeevnneen. 65

Scenario-based demos are helpful, but can be restricting 69
Pay careful attention to how much vendors and integrators are
WIllING 10 tEACH .o 73
It's easy to get excited about something new and interesting 76
RFP responses are often a team effort of multiple providers, which
€anN be CONFUSING ...ieieiieiiiieeie e e 80
If you have no CMS experience, get help for your evaluations 84

An adversarial relationship with your integrator is never helpful88

The lure of “out-of-the-box” functionality is usually misplaced and

11U E=To] o PSPPSR 94
Poor governance and vague ownership do far more damage than a

lack of teChNOIOGYeeiiiiiiiee e 99
Launch day is not the finish line, it's the starting line 104
A lot of results you’re promised will require considerable effort from

NUMANS e 109
Software iS NOt YOUr SAVIOTcccceviiiiieiee e 113
[070] g Tor (U= o] o TR SRR 119
Are There More Things You Should Know?cccccoeeiiiiiineen. 123

ACKNOWIEAEmMENTS ...ccooiiiiiiiiieee e 124

Things You Should Know

About the Author

Deane Barker is a veteran of the content management industry with
decades of experience evaluating, selecting, implementing, and man-
aging content solutions.

When this book began, Deane was the Chief Strategy Officer and
consulting analyst at Blend Interactive, a content management con-
sultancy.

As this book continued to develop, Deane joined Episerver, a content
management and digital experience software vendor, as their Senior
Director of Content Management Strategy.

Deane lives in Sioux Falls, South Dakota with his wife, Annie. They
have three children, a dog, and a cat.

Other books by Deane Barker:
Web Content Management: Systems, Features, and Best Practices

Real World Content Modeling: A Field Guide to CMS Features and
Architecture

Introduction

I’ve been working with content management systems (CMS) for
almost 25 years. I found the Internet as a college student in the
mid-90s, and started web programming not long after. This path
spared me from three years of law school, and it spared the world
from yet another uninspired lawyer.

What we now call “content management” used to be just a bunch of
Perl scripts and flat files. I’ve seen the industry grow from the crud-
est of solutions to today’s technical advancement.

I spent some time in corporate IT, working as an intranet and website
manager, mostly in finance and banking. During this time, I managed
enterprise purchasing projects, so I was on the receiving end of sales
pitches.

In 2005, T co-founded a content management consultancy called
Blend Interactive. I spent the next 15 years in professional services
doing consulting on content management problems. In this capacity,
I participated in CMS selections both as a service provider (I was
selling services to a client) and as a selection consultant (I was help-
ing a client navigate that same process).

In late 2019, I went to work for Episerver, a software vendor, as their
Senior Director of Content Management Strategy. Blend Interactive

Things You Should Know

was their first North American partner (11 years at the time, and
counting), so I was deeply familiar with the product and the compa-
ny. My job at Episerver is to plan the long-term future of the CMS
product, and work with the sales and marketing teams to increase the
visibility and sales around CMS.

Over the years, I’ve seen the CMS buying process from almost every
angle. During this time, I’ve learned a few things about the applic-
ability of a particular CMS to a particular situation, the human dy-
namics of these projects, and how software gets sold by vendors and
integrators.

In the middle of a CMS selection process in Detroit in 2019, I started
writing down some observations. I would see the same patterns re-
peatedly, so I decided to keep track of situations that could be helpful
to explain to potential customers. This process continued for about
18 months.

In 2018, I finally got around to fleshing them out a bit. What started
as a simple blog post became a 20,000-word polemic on the state of
enterprise software purchasing.

I eventually set the writing project aside. It had become too long to
be a blog post, and I honestly wasn’t sure what to do with it.

After joining Episerver, I thought perhaps we could use this as a
contact point with organizations who were embarking on a buying
process and wondering how it was going to play out. For the uniniti-
ated, these projects can be intimidating, and there are things many of
us wish we knew as a buyer and that prospects should know before
they embark on their process.

While I work for a software vendor now, know that the bulk of this
book was written long before I switched sides. This book was solid-
ly written from the customer’s perspective with the goal of helping
them understand the larger process, the implementation project that’s
bearing down on them, and the experiences and motivations of the
other parties.”

The dynamics of these processes is tough to capture in a business
book. Addressing a business audience usually means writing with a
tone of detached sterility and the generic positivity of a self-help gu-
ru. Additionally, every book has to make assumptions about your his-
tory, your capabilities, and the culture of your organization.

Unfortunately, most business books make the wrong assumptions.
They assume your organization is rational, your project is well
thought out, and everyone in your company gets along and works
well together. The result is alienating for anyone who doesn’t fit into
those assumptions...which is most people.

Technology projects are complicated, even under the best circum-
stances. Some problems are simple and clear — if you’re building
a system to manage bank accounts, for example, at least you have
clearly defined tasks and rules for success. And since the project is
solidly in the “line of business,”® you have a strong mandate and
strong support.

But marketing and digital content are different disciplines.

First, they’re inherently subjective. The success metrics aren’t clear
cut, and there are innumerable paths your organization might take.
Internal debates can rage, not only about the journey but also the des-
tination — different people and groups might not even agree on the
goal everyone should be working toward.

1. Note that Episerver had no input into the content. They never tried to censor
or remove anything in these pages — even things that might not reflect well on
vendors. What you'’re reading is the document | wrote, without any vendor fil-
ter.

2. “Line of business” is an activity critical to the mission of the organization. If
you're a bank, it's the systems that manage customer accounts. If you're a
manufacturer, it's the systems that support the creation and shipping of prod-
ucts. In most businesses, the website is a marketing concern and isn’t re-
quired for the generation of revenue.

Things You Should Know

Second, the main purpose of an organization is not to market itself.
Given that CMS and marketing functions are not a line of business
concern, many organizations consider these projects to be outside the
core mission and they’re left to fight for resources and attention.

Therefore, the assumptions for this book are something like this:

* You might not have a clear mandate from the organization. In-
stead, you’re being asked to fix a problem which is vague and
ill-defined.

* Not everyone in your organization might be in agreement about
the goals, methods, or even the necessity of your project.

* You might not have strong budget support, or even any clear idea
of the budget ballpark in which you’re playing. You might have
an unsettling feeling you’re going to have to fight for funds at
some point.

* You might be highly dependent on other parts of the organization
for services, and you might have no control over these groups.
You might feel like you don’t have all the human resources you
need to get the job done.

* Your organization might suffer from some level of dysfunction,
ranging from simple poor communication to more sinister sce-
narios like outright hostility and turf wars.’

* You might have little experience with technology selection or
professional services vendors.

* You might simply feel like you’re in way over your head.

3. Your organization might fit somewhere on the scale of the Capability Immatu-
rity Model (https://en.wikipedia.org/wiki/Capability_Immaturity_Model), which
ranks dysfunction by levels ranging from Negligent, Obstructive, Contemptu-
ous all the way to Undermining.

https://en.wikipedia.org/wiki/Capability_Immaturity_Model
https://en.wikipedia.org/wiki/Capability_Immaturity_Model

That list feels cynical. Know that I’'m not trying to black pill4 or
savvy® you, but I’d rather get that out in the open now, in hopes you
understand I’'m not making rose-tinted assumptions that your situa-
tion is a case study in efficiency and competence.

The real world isn’t a breezy, self-promotional update that someone
writes on LinkedIn. The real world is often messy and imperfect.

The lessons contained in this book are deeply varied in scope — some
are overarching principles, while some seem like minutiae. Some are
practical application, and others border on organizational psycholo-
gy. Some positive and productive, some feel like small glimpses into
human nature, and some feel like I’m peeling back layers on a flawed
system with some bad actors.

Also know that when I use the word “lesson,” I don’t mean it in the
form of “this is a lesson I need to teach you.” Rather, the context is,
this is a lesson that I have learned. Some of this, you may know. But
this is primarily a collection of things I’ve discovered after 20 years
working in this industry that might be helpful to you as you embark
on your own project.

Unquestionably, this book is a collection of arguable opinions. I'm
intentional about using the “I” pronoun all throughout, not out of nar-
cissism but because I want to emphasize that these are the opinions
of a specific person speaking from a specific perspective and histo-
ry. Others might argue with what’s written here, and that’s fine. I can
only speak to my own experience.

Finally, to be clear, this is not a start-to-finish guide to a selection
process. It’s not a comprehensive plan for anything. This book is a

4. black pill (noun or verb; slang): A catastrophic prophecy or spiritless proph-
esying for the future that is not necessarily grounded in reality.

5. savvy (verb; slang): A blanket dismissal of concerns or beliefs accompanied
by the feigned nonchalance of someone with vastly more experience in a dis-
cipline.

Things You Should Know

series of anecdotes and asides describing things you should know be-
fore you get started, hence the title.

You can probably extract and distill an implied process from what
I’ve written here, but if you’re looking for a full script, I'd recom-
mend one of these books:

* The Right Way To Select Technology, by Tony Byrne and Jarrod
Gingras (Rosenfeld Media)

o Off-The-Shelf IT Solutions: A Practitioner’s Guide to Selection
and Procurement, by Martin Tate (BCS, The Chartered Institute
for IT)

Those two titles outline a more formal — and less cynical — process to
selecting a software platform.

That said, here are — in vague-but-by-no-means-ideal order — the
lessons I’ve learned about buying and selling both CMS software and
the services surrounding it.

I hope this helps you.

Deane Barker
April 2020
67

6. With sincere apologies to Bill Simmons and David Foster Wallace, | tend to
write a lot of footnotes. | do this because my mind wanders off onto tangents,
and trying to fit that all into the main narrative would be like forcing you to do
algebra in a room filled with toddlers all hopped up on Pixy Stix.

7. That was what we’ll call a “meta footnote,” meaning it was a footnote about
footnotes. It's meant to be ironically self-aware and therefore hilarious.

Applicability to Software Genres

My professional experience has mainly been with content manage-
ment systems. However, as the subtitle indicates, this book is direct-
ed toward “content technology” in general, which includes:

+ Content management

« Digital asset management

* Marketing automation

» Content recommendation

* Email marketing

* Content analytics

* Commerce and product marketing
These systems have a common link: they help organizations create
and manage a human connection. As such, they tend to be more sub-

jective, and they share common reasons for adoption and common
challenges to usage and evaluation.

The lessons in the book should apply equally to this wide category of
software.

Things You Should Know

Lesson #1

There is usually a familiar roster of
players

Before you start planning, researching, or evaluating, let’s identify
the groups that you’ll see most often in a technology and services
selection process. 1’1l talk about these players throughout the rest of
this book, so this is your cheat sheet for later on.

Most often, there are three main groups that are in it for the long-
haul. These are the organizations at the heart of the selection process:

* Customer: The organization doing the buying. There might be a
lot of different parties within the customer organization, but we’ll
group them all under one banner. This is probably you — the read-
er of this book.

* Vendor: The organization selling the software or, in the case of
open-source, the software itself (more on this later). In a compet-
itive selection, there will be more than one vendor involved.

+ Integrator: The organization selling services to implement the
software. This is often interchangeable with the term “partner,”
which means an integrator who works with a particular CMS
(they’re a “partner” of that software vendor).

Lesson #1

This trio of core players is quite common.

However, sometimes the vendor and the integrator are the same or-
ganization, for various reasons:

» The vendor itself offers professional services. There are software
companies that integrate their own software. Sometimes, in fact,
this is where they make most of their money, and the software is
just a handy way for them to sell services.

* The integrator might be building a custom CMS or integrating a
CMS they built and use only for their customers. This is just a
slight variation from the above, and it’s rarely a good idea, unless
the requirements are deeply specific.

* The software might be open-source. The integrator could be
proposing software that has no selling organization behind it. So,
while the integrator didn’t write the CMS software (they are not
the “vendor,” strictly speaking), they are representing it and pro-
moting it for this project.

In addition to the core players, there are sometimes other groups
around the table.

* Selection Consultant: A company or person the customer has
hired specifically to help them pick a vendor and/or an integrator.
This is sometimes provided to the customer through a subscrip-
tion with an analyst firm.

* Hosting Provider: Sometimes the customer self-hosts on their
own on-premise or cloud infrastructure, but often the hosting is
done by the vendor (for “cloud” solutions’) or the integrator.

1. “Cloud” is a vague term, but for our purposes, it means software that is host-
ed and managed by the same company that produced it. You don’t “purchase”
this software, rather you rent it as a service. This is becoming the predomi-
nant model of enterprise software acquisition.

10

Things You Should Know

Rarely, you might have a separate hosting provider, sometimes
because they specialize in the customer’s market (there are com-
panies that specialize in health care hosting, for example).

* Design Agency: A company contracted solely to do the initial
market research and design. This company’s role is usually fin-
ished when the design is approved and handed off.

* Marketing Agency: A company engaging after launch to run
marketing campaigns using the completed website.

Those last two are often part of the integrator’s service offering —
some integrators are so-called “full-service agencies” that do every-
thing involved in a project, both for launch and beyond. Other inte-
grators just do initial CMS builds and ongoing development, and ad-
ditional providers come in to provide marketing support after launch.

These other service providers are outside the core because they’re of-
ten not present during the purchasing process. If a customer is using
an outside design or marketing firm, those firms only occasionally
have significant input into a software selection.

Also, when engaging with a vendor, understand that there will likely
be multiple people who have different roles:

* You’ll likely encounter a salesperson (a “seller””), and they’ll be
paired with a more technical resource on the opportunity. This
person will usually be a developer with the title of “Solution Ar-
chitect” or “Sales Engineer.” They’ll run the demo, and mock up
scenarios that you’d like to see. The technical capability of sell-
ers varies greatly — some of them actually know relatively little
about the underpinnings of the product, and were hired for their
ability to build relationships and communicate, not their knowl-
edge of how the system works.

* Once you purchase the software, you’ll likely be handed off to
a different seller at the vendor. At most organizations, sellers are
segregated by “new business” and “existing/relationship busi-

Lesson #1

ness.” New business gets you in the door, and then an “account
manager” works with you over time, with the goal to sell you
more product. In many cases, they also do double-duty as cus-
tomer service. They’re often your first point of contact when you
have an non-technical issue that you can’t resolve.

There can be a lot of people to keep track of, and it speaks to another
dynamic: when you embark on a project of the scale you might be
considering, you are initiating a /ot of relationships. A key role of
the project or product manager’s job is managing those relationships.
You need to be explicit about roles, responsibilities, and lines of
communication. Make sure everyone knows who is the main point-
of-contact at every stage of the project.

12

Things You Should Know

Lesson #2

There is no “soulmate” for your
project, and all that glitters will
eventually lose its shine

Finding the right CMS is kind of like finding the right person to mar-
ry — we have fantasies about our one true love and our soulmate, but
the reality is less romantic: there are often a lot of options that will
work, and you might be equally happy with any one of a number of
different partners.

The New York Times was even more cynical about marriage back in
2016 when they said:

[We must abandon the idea] that a perfect being exists who can
meet all our needs and satisfy our every yearning.”

In any genre of software, systems are give and take. One might be
very good at X, acceptable at Y, and terrible at Z. Another one is

1. Why You Will Marry the Wrong Person (https://www.nytimes.com/2016/05/29/
opinion/sunday/why-you-will-marry-the-wrong-person.html), New York Times,
May 28, 2016

13

https://www.nytimes.com/2016/05/29/opinion/sunday/why-you-will-marry-the-wrong-person.html
https://www.nytimes.com/2016/05/29/opinion/sunday/why-you-will-marry-the-wrong-person.html

Lesson #2

moderately good at X and Y, and stellar at Z. Another one may be
amazing at X, Y, and Z, but it’s more money than you can afford.

A CMS is a complex adaptive system. As such, it might not even be
possible to get everything you want in a single system.

Economist Thomas Sowell is famous for saying, “There are no solu-
tions, only trade-offs.” Getting better at one thing might mean getting
worse at another. Improvements in content modeling, for example,
might reduce simplicity and clarity which raises implementation and
training time.

When you evaluate a CMS, don’t ask yourself “is this the ‘right’
CMS,” as if there’s a simple answer to that question, because often-
times, there’s not. Just ask yourself which CMS has the best chance
of working for your project.

Alternately, ask what CMS you can see your team being successful
with. You might have more than one answer here, which means your
decision can fall back to secondary factors like pricing, contractual
compatibility, and services scheduling.

Though vendors will try hard to convince you otherwise, many sys-
tems are simply interchangeable. There are common patterns to any
genre of software that vendors tend to gravitate toward, and rarely is
any one vendor’s product genuinely revolutionary compared to oth-
ers. Differences tend to be incremental, not paradigm-shifting. Addi-
tionally, differences are often spread throughout the system as small
advantages and drawbacks in dozens of areas.

When large differences do appear, they’re often compartmentalized
to specific aspects of functionality that a vendor happens to excel at.

For example, a particular vendor might be good at handling rich me-
dia — images, video, audio, etc. — especially if their product was gen-
eralized out of a more specifically targeted system. Perhaps their
product started life as a digital asset management (DAM) system,
and was then modified into a more general CMS. In this case, it will
likely excel at rich media but suffer correspondingly in other areas.

14

Things You Should Know

This is because vendors move in packs. One vendor will come out
with New Feature X, which they’ll evangelize to the market. How-
ever, a vendor can only maintain a competitive advantage in any par-
ticular area for so long before other vendors take notice that this has
become The Next Big Thing™. Then they’ll all start to replicate it
(if they weren’t already).?

I remember a conversation with an Episerver architect back in 2008
about an idea to modify content based on the real-time behavior
of the visitor. That idea became Episerver’s Visitor Groups, which
turned into a foundational feature of the product.

Within a couple of years, everyone was doing this —all of Episerver’s
competitors had jumped on the personalization bandwagon, and cap-
turing visitor behavior and context was the thing every vendor want-
ed to show in a demo. This is just the way the market was moving
back then, and all the vendors stumbled out that gate at roughly the
same time.®

Anonymous personalization was unheard of, then it was leading
edge, then it was the only thing vendors wanted to show, then it be-
came expected, and, finally, it was boring. And we all moved onto
the next thing.

The larger point is that any competitive advantage is fleeting, and it
has to be re-established by moving onto The Next Next Big Thing™.

2. This is not just in software. In the book The Omnivore’s Dilemma, an execu-
tive from food company General Mills says, “You can’t patent a new [break-
fast] cereal. All you can hope for is to have the market to yourself for a few
months to establish your brand before a competitor knocks off the product.”

3. “Multiple discovery” is a well-known phenomenon. Science is littered with
people who independently discovered or invented the same thing at about the
same time. Any “new” thing is built on a stack of existing innovations and is a
response to the state of the market at the time. Consequently, the same ideas
tend to simultaneously occur in multiple places and minds. See List of multi-
ple discoveries (https://en.wikipedia.org/wiki/List_of multiple_discoveries)

15

https://en.wikipedia.org/wiki/List_of_multiple_discoveries
https://en.wikipedia.org/wiki/List_of_multiple_discoveries

Lesson #2

At any given time, vendors are chasing each other in multiple areas
of functionality, winning at some and losing at others.

For years, I’ve said this about two leading systems: ““You’re going to
end up with the same website either way. It might work a little dif-
ferently, but it’s basically going to do the same things.”

As much as it horrifies the marketing departments of their respective
companies, | stand by this statement. I’ve seen high-end integrations
of both systems. One might be better in Scenario A and the other in
Scenario B, but they’re roughly the same on balance. They compete
directly and frequently, winning a roughly even split of opportuni-
ties.

You’ll see this when you watch a series of vendor demos, especially
from documented scenarios. You’ll watch different vendors show
you basically the same thing, over and over. They all may do it a little
differently, but they all provide the same result in the end, and it can
be hard to definitively say which one of the options might be “better”
than the others.

Earlier, I said that innovations and improvements were incremental
and evolutionary, rather than dramatic and revolutionary. The same
might be said of failure. Technology projects don’t spontaneously
collapse over a single feature lapse. Rather, they tend to break down
over time due to accumulated baggage. They die by a thousand cuts.

Back to the marriage analogy: while some marriages spontaneously
implode due to a singular event, many crumble over time because
one partner is tired of dozens of small issues. The fact that the other
person didn’t make the bed didn’t seem like a big deal when they
were dating. But a few decades down the road, when the rush of them
being a such great dancer has worn off, the other side gets tired of
the little annoyances that accumulate.

Additionally, our fed-up partner might one day realize that things
they do annoy the other person just as much. They begin to under-
stand they should have taken a longer, more critical look at them-
selves before walking down the aisle.

16

Things You Should Know

The same is true of technology. That amazing feature you think will
change everything for your business turns out to have a limited im-
pact, and it’s overwhelmed by all the small fundamentals that the
system is missing. You were so blinded by a flashy feature that you
forgot to be sure this was a system you wanted to live with day after
day.

Worse, you never stopped to consider how well you were ready for
it. You didn’t consider the technology in the context of your current
people and processes and figure out how they needed to change to
really make this work.

I have undoubtedly seen projects stall or disappoint because of spec-
tacularly bad technology. Far more often, I’ve seen projects fail be-
cause of more mundane things like small incompatibilities or staffing
and process issues, which will have a much larger impact on success
or failure.

The vast majority of project failures transcend specific features of the
CMS, so thinking that any single CMS will sink or save a project is
hopelessly myopic.

17

Lesson #3

Lesson #3

Sometimes you just can’t estimate
ROI on your project

In a perfect world, every organization would know exactly what it
would get in return for every dollar it invested in a project. Appro-
priately, this called “return on investment,” or ROI.

You probably already know that though, because people have been
asking you for it. Your organization might want this number before
anyone will agree to the financial outlay.

Sometimes, you can estimate this. Sometimes, you can’t.

And “Estimate” is the only correct word, because no one can know
for sure how your project is going to work out, or what effect it’s
going to have on the business. It might succeed wildly, or it might
fall flat. Anyone who tells you that you’re going to get $X back for
putting $Y in is making a /ot of assumptions.

The key is measurement. How do you measure the actual uplift in
revenue from a website change?

You need three things:

1. Prior measurement, so you have a baseline

18

Things You Should Know

2. An identifiable point of conversion'

3. A method of valuing that conversion

Let’s consider the easiest possible scenario: e-commerce.

If you’re selling something online, you probably have all of these
things:

1. You have some prior measurement in your accounting software.
You’ve certainly kept track of every purchase at some level.

2. Your customers perform clear identifiable actions (i.e. they add a
product to their cart), culminating when they checkout and actu-
ally pay for their purchase.

3. Every checkout is quantitatively measurable. You know how
much they spent, what they bought, and how much profit you
made.

Under these circumstances, measuring ROI is straightforward. I’'m
oversimplifying a bit, but you can make a change, then compare the
numbers both before and after.

It might be a little more complex if you have multiple changes hap-
pening at once, but it’s hard to deny that this is the best-case scenario
for determining ROI. The conversion is binary — they either checked
out or they didn’t — and you know exactly how much that checkout
is worth.

Outside of e-commerce, it’s not that simple.

1. In marketing, a “conversion” is technically when someone “converts” into a
paying customer. More generally, it means when someone takes an action
that provides some value to your organization, such as completing a form,
making an appointment, purchasing something, etc. What constitutes a con-
version is different for every digital property.

19

Lesson #3

Prior metrics are rare. When organizations want to make a change,
they often have to concede that they haven’t been keeping track of
much. That lack of reporting and control could be one reason why
they need a change in the first place.

Even if your organization does have metrics, the scale of change
you’re undergoing might disrupt user patterns to the point where
you’re not measuring a “change” so much as you’re creating some-
thing entirely new. You’re not moving along a known scale; rather,
you’re implementing an entirely new scale. How do you measure the
change in a conversion action that didn’t exist before?

Defining what constitutes a conversion can be difficult. If you have
a general corporate website meant to promote your company, do you
even have a specific point when a visitor takes a proactive action that
provides value?

Best case, you might have a “Make an Appointment” or “Contact
Me” webform. When someone submits it, that’s a conversion. They
may not have become a paying customer, but they’ve converted from
anonymous visitor to sales lead. You can use this to measure the ef-
fectiveness of changes, and you can structure your website to maxi-
mize this number. It gives you an anchor with which to determine if
you’re making things better or worse.

Assuming you have this, you can certainly measure your conversion
rate, but true ROI requires you put some dollar amount on it. This
can be difficult.

1. You could track every specific visitor all the way from initial
conversion to sale. You would then know when and if they spent
any money with you sometime in the future.

2. You could track aggregates and extrapolate an individual value.
Let’s say for every 100 people who make an appointment, seven
of them buy something, and your average sale is $439. Math re-
veals that 100 people completing that form equals $3,073 in rev-
enue (7 x $439), meaning each completion is “worth” $30.73,

20

Things You Should Know

more or less.

It’s a far cry from the clarity of e-commerce, but it’s something.

However, this requires comprehensive tracking. You need to make
sure you can identify customers who came in through a conversion,
and track them all the way to a sale, then somehow compile those
statistics automatically.

When confronted by this, a customer once told me that this would
require them to integrate six different systems from three different
departments, and there was zero chance it was going to happen.

Additionally, it gets complicated when you have a multi-channel
marketing strategy. When you’re actively and passively contacting
customers through multiple methods, then who’s to say that the web-
site was the specific thing that converted them?

Maybe they saw a display ad while walking through an airport. For
all you know, the time they spent filling out the contact form was the
very first time they had ever seen the website. And maybe they hated
the experience and the website was a drawback that almost prevented
a conversion, not an advantage that enabled one.

Things get worse when you don’t have an identifiable conversion.
Maybe you don’t have a form that someone can just “fill out” or even
if you do, you don’t have a dollar amount associated to that conver-
sion. Maybe your website is just filled with content about your orga-
nization or cause, and you’re just trying to plant some idea in a visi-
tor’s head.

Let’s say you own a construction company that bids on massive gov-
ernment highway projects. No one goes to a website, puts 100 miles
of interstate in their shopping cart, then checks out. No one even fills
out a contact form. The process of being selected for these projects
happens largely offline, mainly through relationships and formal pro-
curement processes.

21

Lesson #3

At best, your website is background marketing. Someone on the con-
tractor selection team might go there just to make sure your company
is legitimate. They’ll browse around for a while, review some case
studies, and hopefully come away with an impression that your com-
pany is one that could get the job done. Months later, while they’re
staring down bids and being asked to vote, you just hope that some-
thing they saw on your website — or perhaps the overall impression
they got — surfaces and influences their decision.?

In this situation, all you’re really “selling” is a memory. There’s no
online conversion, and the actual conversion takes place sometime
in the future, offline. The best you can hope for is that the memory
your digital property leaves behind is strong enough to contribute to
a future point of value.

And this is the fundamental problem of marketing attribution, ver-
balized by the now-classic lament: “I know that half of my marketing
budget is wasted, I just don’t know which half.”

Sometimes, figuring out ROI is just an unsolvable problem. You
need good metrics, identifiable conversions, and a way to value those
conversions in financial terms. It’s a minority of projects that have
all those pieces fall into place.

And at the risk of complete cynicism, understand that some cus-
tomers have a website only because it would seem weird not to have
one. Having a competent website is one price of admission to ap-
pear as a legitimate company that your customers want to do busi-
ness with.

By all means, try to figure out an ROI model and use it to make pro-
jections and post-justify an expense, but also be prepared to concede
that sometimes, this is not possible. I’ve seen websites contorted far

2. | concede that you might use this website for other purposes, like recruiting
employees. But if someone is staring down a budget request, they usually
want to see revenue upside.

22

Things You Should Know

beyond their original intention because someone was demanding an
ROI number from a scenario that wasn’t likely to yield it. The re-
sulting mess might have been measurable, but was it was likely less
effective to the ultimate goal.

Sometimes, your gut feeling on ROI is the best you can do, and you
shouldn’t automatically let any misgivings derail your project.

23

Lesson #4

Lesson #4

Software usually has to fit into larger
technology landscapes

Every decision is influenced by restrictions. The art of good deci-
sion-making is knowing what the restrictions are and how to identify
the optimal solution that can thread in between them.

You don’t want your technology selection to fail at the last minute.
It’s much better to figure out where rigid restrictions are and steer
around them than have your process implode after you’ve fallen in
love with a system.

In a perfect world, your CMS floats in a technology vacuum, unaf-
fected by anything else. For example, it might be purchased by Mar-
keting, developed by a third-party integrator, and hosted in the ven-
dor’s cloud. Consequently, it will never touch your IT infrastructure
nor be touched by your IT staff.

This is actually becoming more common. Marketing departments are
making end runs around their own IT by placing entire projects out-
side the walls of the organization.

And many IT managers welcome this. Lots of them are overwhelmed
just dealing with infrastructure and line-of-business technology — if

24

Things You Should Know

the network is down and no one can log on at their desktop, it’s hard
to get worked up over the wrong font size on the website.

These situations are great for vendors because they don’t run into
any sales objections related to existing technology infrastructure or
staffing. In many cases, you’re only talking to Marketing, and IT
isn’t even at the table.

On the other end of scale, there are times when your IT infrastructure
and staffing imposes some rigid requirements.

» Ifyou want to develop in-house, do you have developers with the
right programming skills?

» If you want to host on-premise, do you support the technology
stack software requires?

« If you’re externally regulated or audited, does the software sup-
port the right protocols?

* If you must connect to some other system, does the software sup-
port that integration?

These questions can be unfortunately binary and brutally final — ei-
ther a system works or it doesn’t, and if it doesn’t, then there’s often
no point continuing down that line of selection. I’ve seen some great
software be incompatible in one infuriatingly specific way, which
killed a potential deal.

For example, a client had multiple web applications on multiple dif-
ferent programming stacks, and they wanted to manage all the con-
tent that was displayed in these applications from one system.

They were evaluating a very capable CMS built on Microsoft’s .NET
framework which everyone was excited about...until IT noted that
the CMS used a “coupled” architecture, which meant that the CMS
managed all inbound requests to the web server. The CMS really had
to “own” the websites it managed from a processing standpoint.

25

Lesson #4

This meant that the web server the CMS ran on had to be Microsoft
Windows-based server. And, by extension, this meant these web ap-
plications would all have to be re-written in the .NET Framework in
order to co-exist with the CMS. The CMS was going to drop on top
of their environment like blanket, covering everything it was expect-
ed to manage and forcing it all to run under an entirely new architec-
ture.

You could feel the room instantly deflate. Everyone around the table
knew this was never going to happen. Getting a CMS implemented
at all was going to be a challenge, and they certainly couldn’t rewrite
all their line-of-business applications to accommodate it. What they
needed was a decoupled CMS which could “push” content into those
environments in a neutral form.”

The deal died at that second. The CMS was fantastic, but it just
wasn’t going to fit into their technical or organizational infrastruc-
ture. The single technical incompatibility was both massive and fatal,
leaving the editorial and marketing teams stranded at the altar.

Software can’t just be great — it needs to be great in your exact en-
vironment, and this is idiosyncratic. You might find yourself trying
to thread your way through a minefield of specific and rigid require-
ments. Human processes, budget and schedule can bend and flex, but
technology limits are much more rigid.

You need to know these limitations up-front, even before you write
an RFI. This means pointed questions with whomever manages your
technology environment:

1. Who will implement the CMS?
2. Where will the website be hosted?

1. An architecture known as “decoupled,” where the management of content is
separated from the delivery. A decoupled CMS generates static artifacts like
HTML files or database records and transmits them to another system for de-
livery.

26

Things You Should Know

3. What language, technology stack, or protocol restrictions are in-
violable in your organization?

4. What other applications have to work with the CMS?

You might not want to open a can of worms by discussing this, but
understand that you’re going to be ultimately limited by these restric-
tions, so you may as well get them out on the table early. These re-
strictions are the first filter on what goes in the top of the selection
funnel.

There’s a tendency to try to fly under the radar during your evalua-
tion phase. You don’t want to “release the hounds” of IT on your pro-
ject until you’ve found something you like. But in some situations,
you’ll be writing checks that you can’t cash, because you’re not in
control of the environment and systems with which your CMS needs
to integrate.

Identify these restrictions early to save yourself disappointment later
on. You might argue them in some cases, but if they’re inviolable,
it’s better to know early.

27

Lesson #5

Lesson #5

Internal IT groups can be territorial
for a variety of reasons

Ten years ago, vendors and integrators used to sell CMS to IT. Devel-
opers and system administrators usually initiated the sale, we sold di-
rectly to them, and they often implemented it themselves. They were
part of the process.

One of the big shifts of the last decade is that we now sell to Mar-
keting. IT is often just advised that this is happening. Sometimes,
they’re not even at the table.

Often, they’re fine with this, because they’re busy just managing
line-of-business systems and can’t be bothered with the website.
Some IT departments consider the corporate website a trivial mar-
keting exercise anyway.

Sometimes, though, IT gets territorial, especially if they’re the ones
who have been managing and developing the website so far. Occa-
sionally, this manifests as them coming in and trying to hobble the
selection process.

This sets up the seemingly perennial conflict of these projects: Mar-
keting versus IT.

28

Things You Should Know

This happens for a number of sub-reasons under the general theme
of IT protecting their territory.

* Some people think a change is a judgment on what they’ve done
so far. Since Marketing is looking for a new system, they are,
in some senses, saying, “What you’ve done so far is not good
enough, and we want to talk to real experts.” This can hurt.

* Lots of companies have a system they built internally, and some
developers just really like working on their in-house CMS. I to-
tally get this. CMS is fun, and I’d love to work on CMS devel-
opment all day. When you enjoy what you’re doing and feel en-
gaged with it, your emotional investment makes it tough to have
someone tell you that you’re going to lose it.

* Some people are trying to keep dead bodies buried. There isn’t
a developer in the world who doesn’t have something they built
that they really don’t want to see the light of day. They can just
imagine a third-party integrator looking at what they’ve done,
rolling their eyes, and saying, “No wonder they called us in. This
is amateur hour.”

* Some IT groups are concerned about decreasing relevance. At
the extreme, some developers worry about losing their jobs.
More likely, an IT administrator is concerned about his group los-
ing organizational influence or budget dollars.

* Some developers just know how hard this stuff is, and they’re
concerned that Marketing is being unrealistic about what they
want and getting their hopes too high. A developer who has been
deep in the weeds with their organization’s content problems has
a lot of institutional knowledge, and they might be watching a
selection play out and thinking, “These guys have no idea how
complicated this is. None of these vendors is actually going to
solve the problems we have.”

I have some personal experience with that last one. I once sold a pro-
ject to a Marketing team, over the objections of IT. We had been as-

29

Lesson #5

sured by Marketing that they knew exactly what they needed, and we
had to move quickly or they would lose the budget opportunity.

Sadly, it turned out that Marketing had no idea of how the internals
of their own website worked. The functionality they worked with
from day-to-day was just the tip of the iceberg.

As the project started and we peeled back the layers, it began to dawn
on us how wildly under-scoped the project was. My company com-
pleted it, but lost a shocking amount of money on the project, while
the unheeded warnings of IT echoed through my head every day.

We’ll talk a bit later about the novelty of change, and how your cur-
rent CMS represents everything you don’t like, while your new CMS
represents a bright new future where everything works out. The same
can be true of staffing. Your IT group might represent everything you
dislike about your current situation. You might simply be laying all
your current problems on their doorstep, sometimes unfairly.

These issues can be tough to work through, because we’re not ther-
apists, and some of this stuff can get personal. Feelings get hurt,
jobs are on the line, and professional competence gets questioned.
More than once, I’ve had to mediate passionate disagreements be-
tween Marketing and IT where the past gets dredged up and blame
gets thrown around.

The best advice I can give is to be sensitive to how your search for a
new solution might be perceived. Not everyone who disagrees with
it is a bad actor, they’re often just human.

30

Things You Should Know

Lesson #6

The relationship dynamics between
the players are different

With three core players, network math tells us we have three unique
couples.” Assuming a deal is made, there are some dynamics that are
helpful to understand. Different players have different motivations
and relationships, and the strength and intensity of those relation-
ships will vary over time.

Your project can be roughly divided into time periods.
« Evaluation: The period during which you’re actively reviewing
software and service providers, before making a final selection.

* Development: The period during which you’re customizing
(“integrating”) the software to fulfill your specific needs.

* Post-Launch: The period after which the bulk of the integration
is complete, and the project has publicly launched to its intended
audience. The only end to this period is when the website is re-
moved from the Internet.

1.n* (n-1) /2 in case you were wondering.

31

Lesson #6

Here are how the various relationships exist and evolve over time.

* Customer-Vendor: The closeness of this relationship depends

on whether or not an integrator is in the middle. The vendor
will often be involved during the evaluation period, but the na-
ture of their involvement might change once a purchase decision
is made. If the customer is integrating the software themselves,
they’ll usually stay close with the vendor post-launch, especially
their support team during development. If an integrator is work-
ing for the customer, the integrator will often sit in the middle of
this relationship during development and post-launch. The ven-
dor might have an account manager who occasionally contacts
the customer directly, but the integrator usually ends up becom-
ing the vendor’s proxy for most issues.

Customer-Integrator: In most cases, this is the relationship
that’s the longest and most intimate. The integrator has to stick
around and make the vendor’s software fulfill all the promises.
Customers who plan to use an integrator will usually evaluate
them alongside the vendor. Clearly, the customer will work heav-
ily with the integrator during development. Post-launch, the inte-
grator will often continue working with the customer for years af-
terward. The integrator will usually be the customer’s first phone
call in the event of a problem.

Integrator-Vendor: There’s usually always a wider relationship
here, beyond any particular customer or project. Integrators will
work with the same vendor over and over again, and sometimes
only work with that vendor. They may have been doing this for
years, and their entire company might revolve around this partic-

32

Things You Should Know

ular vendor.? They often have helpful contacts and backchannels
with the vendor.

Some of the above dynamics stem from the fact that a digital proper-
ty of some kind (website, app, whatever) isn’t a thing that gets built
and then is never touched again. These projects never completely end
— launch day is the starting line, not the finish line. A project even-
tually becomes a product and continues to develop.

So the integrator that builds your website will likely stick around. If
they build it and then immediately disappear, that’s not normal — usu-
ally indicative of a broken relationship at some level.?

Two other relationships are notable:

Selection Consultant-Vendor and Selection Consultant-Inte-
grator: A selection consultant will have vendors and integrators
who they know are competent and who they invite into multiple
processes. Very often, a specific project won’t be the first time
the vendor or integrator has worked with a particular consultant.
Selection consultants don’t want to be embarrassed by poorly
prepared vendors or integrators, so they’ll re-use ones they trust
to perform well — they’ll evaluate the customer’s needs, and
reach out to the “usual suspects” for that type of project.

2. The downside of a relationship this tight is that “when all you have is a ham-

mer, then everything looks like a nail.” An integrator might try to bend every
situation to their chosen vendor, even when it's not the ideal choice. This is al-
so known as “The Law of Instrument.”

. Occasionally, this is the plan. In some cases, a customer will have an integra-

tor do the initial build, then intend to take the project in-house. However, this
actually happens far less often than planned. If a customer reached out to an
integrator in the first place, it's usually because they don’t have the in-house
skills or capacity. The best of intentions tend to break down in the face of
workload, and I've seen “planned handoffs” get repeatedly delayed until it be-
came obvious that the project was never coming in-house.

33

Lesson #6

* Hosting Provider-Integrator: Once the site has launched, the
hosting provider and integrator will need to work together to
keep it running. This relationship can sometimes be contentious
when something goes wrong and the two parties start pointing
fingers at each other.

That last relationship is not common, just because it’s rare to have a
completely dedicated hosting provider. Hosting is usually provided
by the vendor themselves, or the integrator who does the services
work.

This is simply because the hosting environment for a project be-
comes deeply integrated into the functionality of the project as a
whole. The stability of a boat is a combination of (1) the size and
configuration of the boat itself, and (2) the state of the water the boat
is currently floating in. The same is true with hosting — the stabili-
ty of the app depends on both the app itself and the environment in
which it runs, so it gets hard to separate one from the other.

This chapter simply reinforces the earlier point about relationships:
a big part of any project is managing all the different people and or-
ganizations who come to the table and understanding how they per-
ceive and interact with each other.

34

Things You Should Know

Lesson #7

There can be a blurry line between
software and services

When looking for a new CMS to be implemented by an external in-
tegrator, you need to decide where to start:
* Do you find the vendor first, then look for an integrator?
* Do you find the integrator, and have them recommend the ven-
dor?
Software then services? Or services then software?"’

These two options speak to the two sides of your project: (1) the
CMS itself, and (2) the work it takes to get it installed, integrated,
hosted, and supported over time.

An implementation is like dancing: there are two partners who both
have to be skilled individually and together. Your vendor needs to
have a competent product, your integrator needs to know how to

1. Annoyingly, I'm not going to answer this question definitively. It depends on
the project and its long-term future.

35

Lesson #7

build a website, and your integrator needs to know that particular
vendors software. Even skilled partners don’t dance well together
the first time out.?

Understand too that if you start by selecting your integrator, they’re
going to guide you to a vendor with which they have experience or
a relationship. Many times, they’re quite open about this — some in-
tegrators only work with a single vendor. They promote this and you
know this going in (indeed, that may be why you picked them in the
first place: “We love Drupal. We just need someone to integrate it.”).

Blend Interactive, the services company I co-founded, is a good ex-
ample. That company became an Episerver partner early in its his-
tory, and basically evolved around that software. Blend was Epis-
erver’s first North American reselling partner. Blend became very
skilled with Episerver, evangelized it to customers, other partners,
and to the technical community in general. While Blend worked with
a few other systems, they never hid their bias toward Episerver.

As is common in the services business, Episerver became our “lead-
ing system,” meaning it was the system we tended to default to.
When we evaluated a new project, the first lens we looked through
was “will this work with Episerver?” If we found factors that pre-
cluded Episerver — budget, technical stack, etc. — only then did we
turn to something else.

This also speaks to another common pattern: an integrator often has
two leading systems, based on budget capacity. They’ll have the
commercial system they prefer, but will also have an open-source
or lower-cost system on standby for situations where the customer
doesn’t have the budget for the alternative.’

2. | might waffle a bit here, because some platforms are simple enough that a
smart integrator can figure it out as they go along. But that's not common, and
you should never count on it.

36

Things You Should Know

You might think this is limited or biased — and it is — but it’s also
natural. This is just how the human brain works. When you evaluate
any situation, you’re comparing it to past situations and looking for
clues or markers that make that situation similar or different. You ad-
just your actions based on this.*

Take the most neutral, unbiased consultant in the world, show them
your project, and I promise they’ll mentally categorize it against a
known set of past projects. They might not tell you this, or even be
aware they did it, but I guarantee it happened.

Sometimes, an integrator will offer to set aside their bias and help
you select a CMS from a wide-open field of options...but not really.
I maintain that it’s nigh impossible to ignore past experience enough
to be truly neutral. Beyond financial incentives and relationships, an
integrator usually works with software because they like it and be-
lieve in it, so they’re going to tend toward what they know. And even
if they ignore software with which they have direct experience, they
will likely tend toward software that exhibits similar architecture and
patterns.

This isn’t always a bad thing —no one can be an expert in everything,
and an integrator usually has a genuine passion that comes from a
history of successful work with a particular vendor. If you’re asking
for someone’s opinion, then you have to accept that they can’t forget
work they’ve done in the past.

3. Although, | do know of companies that intentionally refuse to offer a lower-
cost option, and use the cost of their preferred vendor as a qualifying device:
“If they can’t afford [insert vendor here], then they can’t afford us.”

4. Gary A. Klein is a cognitive psychologist who has studied this phenomenon
extensively. His book Sources of Power: How People Make Decisions is one
of the definitive works in this space. His model is entitled “Recognition-Primed
Decisions,” which speaks to the theory that we base decisions on how we
recognize them in relation to past experience.

37

Lesson #7

Just know that both sides of the vendor-integrator pairing matter,
as does the intersection between them. A lot of great software has
been destroyed by a poor implementation. Conversely, sometimes
mediocre software can be saved by a veteran integrator who knows
where all the bodies are buried and has experience in working around
limitations.®

Is there a “right” answer to which side you should select first: inte-
grator or vendor? Not necessarily. I’ve seen organizations have suc-
cessful projects using both methods. However, many organizations
already have an established tendency on one side — they like a spe-
cific CMS, or they have a relationship with a specific integrator. The
other side tends to flow naturally from that.

It’s usually not possible to completely isolate one side from the other.
Every CMS is going to influence the selection of integrator, and vice-
versa. There’s no perfect firewall between the two sides.

The main point here is not to get “software myopia.” No matter how
great the vendor seems, someone has to work with their system, and
that’s the real trick. Giving a Ferrari to a teenage driver is a good way
to end up with a car wreck.

5. My company once made a good living working with a terrible CMS just be-
cause we knew how to make it...less bad. We hated the CMS, but we got
called in over and over on what we called “salvage operations”: one of this
vendor’s customers was upset about their resulting implementation, and we
came in to manipulate the system in unique ways to make it better. We didn’t
love the work, but it sure paid well.

38

Things You Should Know

Lesson #8

Open-source software often has no
representation

As noted earlier, you can go find a software vendor who will bring in
an integrator, or you can find an integrator who will bring in a ven-
dor. Unfortunately, under that dichotomy, open-source becomes an
orphan case, especially when you want to integrate it yourself. Who
represents it?

For any software, the only people who are going to advocate for it,
demonstrate it, and try to sell you on it are organizations that stand
to make money from it. Either there’s a vendor who sells licenses, or
an integrator who sells services.

No one will formally evangelize an open-source CMS for no possible
return, no matter how much they like it or believe in it. To find some-
one willing to sell you on an open-source platform, you need to find:

* An integrator who specializes in that CMS and who can generate
professional services revenue by integrating it for you

* A hosting vendor who specializes in that CMS and can charge
you hosting fees

39

Lesson #8

* An organization that provides some value-added product on top
of that CMS (though, in that case, what they’re selling is their
product, not the CMS itself)

Consider a situation where none of those are true. Let’s say you’ve
heard about Drupal, you think you have the talent to integrate it in-
house, and you want to host in your own data center or your own
cloud infrastructure.

If you still need to sell this to your organization, who advocates for
it? Who answers questions about it? Who demos it?

Well...you do. You might theoretically pay an integrator or expert
specifically to give you a demo with the understanding that this is all
they’re going to do, but I’ve never heard of this actually happening.
You might make this happen with the promise of a follow-on con-
sulting engagement as you get up to speed, but then we’re back to the
first option above, and you’ve found someone who stands to make
money from your selection.

What can be problematic is when your organization requires techni-
cal answers about the system for regulatory or compliance reasons.
Selling open-source software to larger enterprises or government or-
ganizations can be difficult because the organization’s purchasing
process may be designed around the expectation of a selling entity.
In many circles, open-source software still has a perception problem.

For example, organizations often have long lists of questions that
need technical answers. Some examples:
1. How does your software avoid SQL injection attacks?

2. What is your process for background checks on your develop-
ment team?

3. How many locked doors are between the outside and your devel-
opment servers?"’

40

Things You Should Know

These questions aren’t totally without merit, but they pre-suppose a
traditional vendor, or some other organization or service provider.
How can you get answers for questions like these for an open-source
product? Some of the questions would require you to find and inter-
view a single developer in the software’s ecosystem. Other questions
simply don’t apply.

In the mind of the organization asking these questions, there simply
has to be some governing authority standing behind every software
platform. Their entire procurement process might be based on this
premise, and they would likely penalize software not exhibiting the
structure they expect.

Just remember that if you have no party who can generate revenue by
you deciding to use a particular CMS, then no one will put effort into
selling it. With commercial CMS, you have a vendor who’s the ob-
vious beneficiary. With open-source that someone integrates for you,
you have an integrator who is going to sell services.

With open-source software that you integrate and host yourself,
there’s no advocate, and that can be a lonely place to be. In that sit-
uation, all you have is the ecosystem of the CMS — the online com-
munity, documentation, and existing evangelism about it. You can
still do an evaluation, but you’ll need to have a technical resource in-
house to act as the system’s “vendor proxy.”

1. 'm not making this one up. | actually saw this in an RFP for a government
agency once.

41

Lesson #9

Lesson #9

There’s sometimes tension between
the vendor and their partner
integrator

At the largest scope, a vendor-integrator relationship is usually al-
ways benevolent. If it wasn’t, it wouldn’t exist — both parties would
find someone else to work with. However, in specific instances, the
relationship can get trickier.

If you’re talking with both a vendor and an integrator, you’ve put
them in the position of selling into the same opportunity. They have
to work together, as they’ll succeed or fail as a pair. Sometimes, they
don’t totally agree on the specific path to that goal.

A sacrosanct rule to acknowledge is this: Vendors always want to sell
as much software as possible.

This is how sales works, universally. Selling $1 worth of product is
great, but selling $5 is always better.

Every vendor has a variety of products. They have a core CMS, cer-
tainly, but they have all sorts of other add-ons (“modules,” “exten-
sions,” whatever), services, and licensing options. No vendor has a

42

Things You Should Know

single flat fee. Every quoted price is a sliding scale of size based on
what particular combination and number of products are in it.

Every vendor wants to load up every deal with as many products as
they can jam into it to pump up the total amount of the deal. This is
how vendors stay in business. Their sales staff is heavily incentivized
to sell everything they possibly can, regardless of actual need.

This might sound harsh, but this is true of every industry. Have you
ever been sold the “weather-proofing package” when you bought a
new car? Or the extended warranty when you bought electronics? Or
even got a better deal if you “super size” your food order? Selling
software is no different than selling anything else, and it’s your job
to police your own needs against what you’re being offered.

Still, for an integrator, the vendor’s natural tendency to increase the
size of a sale is sometimes problematic. The integrator is usually fine
with the vendor’s core product, since it’s the basis for the entire re-
lationship. However, sometimes integrators can take issue with addi-
tional products. These are “add-ons” or services that vendors want to
sell in addition to the core CMS.

Issues vary:
* The integrator might not think that the customer needs the add-
on
+ The integrator might not have much experience with the add-on
» The integrator might not think the add-on is very good

* The integrator might think the add-on is overpriced, and they
think they can do the same thing for less money through alterna-
tive means

Occasionally, an integrator has to shield the customer from a hail-
storm of options and add-ons. In years past, I’ve been involved in
some tense conversations about how a vendor was pricing their pack-
age, and whether or not that package was benefiting the customer.

43

Lesson #9

Why does the integrator even care? If a vendor wants to sell more
and more product, how does this negatively affect the integrator?

The noble answer is that a good integrator advocates for their cus-
tomer and defends them against unnecessary expense. This is cer-
tainly true in many cases, but there are a couple more cynical, prac-
tical reasons.

* The vendor and the integrator are competing for the same
dollars. Every customer has a budget limit, and a dollar that a
customer spends on software or hosting is a dollar they can’t
spend on services and vice-versa. Integrators sometimes resent
vendors that suck up an inordinate share of the budget with prod-
ucts that just aren’t necessary, and vendors get annoyed with inte-
grators that over-price their services leaving no budget for prod-
uct (or price themselves out of an opportunity entirely).

* The integrator and the vendor rely on the other’s compe-
tence. It’s easy for a vendor to make big promises about a sub-
par product, then walk away and let the integrator try to figure
out how to deliver. In some senses, a vendor is gleefully writing
checks that the integrator has to cash, and when a vendor over-
sells a bad product, the integrator is the one who looks bad when
it doesn’t work out. Alternately, a vendor might get stuck in a
deal with a substandard integrator who doesn’t have the skill nec-
essary to make their product look good during the sales process,
or that botches the implementation, leaving an unhappy customer
on the vendor’s doorstep.

The dynamics of this relationship depend heavily on where a deal
originated. The customer usually controls where a deal is born.
Sometimes customers pick a vendor who then brings in an integrator,
and sometimes it’s the other way around. That origination of the re-
lationship will influence who controls or “steers” the deal.

If the customer contacts the vendor first, and the vendor picks a par-
ticular integrator to assist on the deal, then there’s an implied oblig-

44

Things You Should Know

ation there. The integrator knows it’s the vendor’s deal, and they’re
usually going to go along with whatever the vendor wants to sell.

As someone eloquently put it to me once, “You dance with the one
who brung you.”

If the roles are reversed — the deal started with the integrator, and
they brought the vendor in — then the integrator might be more vocal
about what products the vendor sells. Each side will act to protect a
deal they consider “theirs.”

And sometimes this is in dispute. In some situations, both sides think
the deal is theirs to steer.

For example, when selling services with Blend Interactive, I had
been contacted by a selection consultant and had recommended a
vendor’s product. The customer then reached out to both of us — ven-
dor and integrator — simultaneously.

We came to terms with the customer on a purchase of the the ven-
dor’s core product.

The vendor then quickly proposed an additional service at $3,000/
month because, “At that price, it’s usually a slam dunk.” This was a
service that the customer didn’t need at the moment, and wouldn’t
have time to learn amidst all the other changes that were about to
happen.

“Slam dunk” or not, over a five-year horizon, this was $180,000 they
would be paying the vendor, that they would not be paying us. I de-
clined to offer this option, to the vendor’s annoyance.

This led to a follow-on conversation about which party the deal ac-
tually belonged to. Since the customer reached out to both parties
together, the vendor felt like this was a “marketing win” for them,
while we felt like the vendor was only in the deal because we had
recommended them — to us, this was a “partner-led opportunity.” We
had to argue the case that this was our deal to steer.

This situation resolved itself amicably, and the customer was never
even aware of the dispute, but just know that these things come up.

45

Lesson #9

Vendor and integrator want to present a united front, so they’re not
going to air each other’s dirty laundry in front of the customer, but
behind the scenes, disputes happen.

In a close, long-term vendor-integrator relationship, they become a
lot like siblings — they love each other and want good things for each
other overall, but they still squabble occasionally.

48

Things You Should Know

Lesson #10

The most thorough selection
processes are a funnel of deepening
analysis

A selection process is a definable project which should have a me-
thodical process behind it. It’s neither magical nor accidental. It
should be managed with all the milestones and reporting that any
project would have.

In any selection process, you need to decide how deep you’re going
to go. There’s a balance between doing adequate due diligence and
suffering from “paralysis by analysis.” In many situations, customers
have just asked someone they trust to recommend a system, followed
that advice, and been very happy.

In other situations, the process goes much deeper. The more thorough
processes work down through a “funnel” of analysis. You start with
the widest possible view, then begin to eliminate vendors in response
to their responses and your evaluation, narrowing your view, until
you arrive at a single point of decision.

A typical funnel will look something like this:

47

Lesson #10

* Request for Information (RFI) sent to a “long-list” of 7-8 ven-
dors. This is set of questions designed to eliminate vendors on the
largest of criteria. Some systems will be priced out of your range,
some will run on the wrong architecture, some won’t offer cloud,
etc. You have a list of deal breakers, and this will filter them out.
An RFI asks vendors about their platform — you’re not necessar-
ily revealing a lot about your project at this point.

* Request for Proposal (RFP) sent to a “short-list” of 3-4 ven-
dors. This is where you explain your project, exactly what you’re
looking for, the goals you need to achieve, and provide a list of
demo scenarios for the vendor to show you. This is also where
you ask for more detailed, binding pricing. This is customarily
followed by a demo session from the responding vendors.

* Proof of Concept (POC) for one vendor. This is where you have
a final selection, and you want to make sure the system is as good
in practice as it seems. You’ll ask the vendor to come in and ac-
tually implement something small for you, or train your team and
work alongside them while they implement.”

At each stage, you’ll learn more and more, and you’ll eliminate poor-
fitting systems. Eventually, your POC should vet the final candidate.
If that vendor fumbles the POC, then you go back to your RFP round,
pick second place, and move them into a POC. If this happens, con-
sider yourself lucky for finding out before you consummate the pur-
chase.

Some consultants prefer more than one vendor in a competitive POC,
while some consider the POC a final vetting for a single vendor.
When consulting on a selection, I generally cut from three RFP ven-
dors to a single vendor then verify that vendor with a POC, rather

1. Be prepared to pay for a POC, though perhaps not at full rate. Sometimes the
POC is done at no cost, but with a “kill fee” or “consolation fee” if the vendor
or integrator does not win the project.

48

Things You Should Know

than cutting a single vendor, then conducting a competitive, two-ven-
dor POC.

One trick is figuring out what goes into the top of the funnel — the
long list, to which you send the RFL.

There’s no set answer here. Some ideas:

* Ask peers in your industry

* See who is sponsoring conferences in your industry
+ Ask analysts in the industry

* Review analyst reports

» Hire a consultant who specializes in the field

That last option is ideal, if you have the budget for it and you can
find someone to work on a limited engagement. A few emails to ex-
change documents and a single phone call might be enough to them
to recommend a starting list for you.

Key to this process is engaging with as few non-viable vendors as
possible. At the highest possible level, you can eliminate vendors on
a few rigid criteria:

1. Technology stack. If you’re a .NET shop and their system is Ja-
va, then it’s not going to work. (Assuming, of course, you’re re-
stricted by tech stack.)

2. Available budget. Do you have $100/month, or $10,000/month?
A lower budget will eliminate a lot of options.

3. Market space. If you want a general, marketing-capable CMS,
then it’s wide-open. But more specialized use cases — you need a
learning management system for a university, for example — will
narrow the pool sharply.

The goal is two-fold —

49

Lesson #10

First, you don’t want to waste vendors’ time. They have to put forth
considerable effort to respond to your requests. Don’t create needless
work for them.

Second, don t create needless work for yourself. Working through a
formal RFP process is complicated. It requires extended analysis and
divergent thinking along multiple axes of functionality and process.
To do it well can be exhausting. You can only analyze so much, and
every system you add to your search is one more that you have to
work through.

In addition to the increased workload, every new system runs the risk
of sending you off on a unnecessary tangent. A new vendor might
storm in, guns blazing, promoting a massive paradigm shift and up-
ending everything. More often than not, this just confuses everyone.

Be careful with your shortlist. I defy anyone to give fair, deep-dive
analysis to more than three vendors.

The larger point is that you shouldn’t get overwhelmed by attempting
to do a “Big Bang” selection. Additionally, you shouldn’t fixate on a
single product to the exclusion of everything else.

You should start with a wide funnel, then narrow it down over time
by consciously and deliberately eliminating vendors. Considering a
wider array of products will allow you to learn what’s in the market,
and the elimination of products will force you to acknowledge why
you didn’t think they would work, which is critical to understanding
your project.

Your final selection shouldn’t be climactic or the result of a wild de-
bate. If a disagreement is still raging late into the process, then it
might be worth backing up and asking if members of the team are in
complete agreement on the goals of the project, or if there is a foun-
dational misalignment that would cause the group to be so far apart.

At the end of the process, you should have gone through a method-
ical level of analysis, narrowing over time, which has given you a
measure of peace and consensus about your decision.

50

Things You Should Know

Lesson #11

A vendor’s ecosystem should be
evaluated as a core feature

Eleven years ago, when Episerver had first entered the North Amer-
ican market and Blend Interactive was one of the few integrators
working with it, a certain consultant I knew would always respond to
my evangelism the same way: “Let me know when they have more
than a half-dozen partners.”

This comment would annoy me, because in my head, we worked
with the software, and that was enough.

But I’ve since come to understand that this wasn’t enough. Software
doesn’t exist in a vacuum, and what happens outside of the vendor
is just as important as the system and vendor themselves. Software
needs to be supported by a network of resources, known as an
“ecosystem.”

The ecosystem of software platform consists of:

* An active community
* Accurate, comprehensive documentation

* Qualified integration partners

51

Lesson #11

We’ll unpack these items individually.

Community can be both formal and informal. The vendor probably
provides a set of discussion forums, and good vendors encourage or
even require their professional services team to spend time there an-
swering questions. Many vendors reward members with some type
of “MVP” status for helping other members of the community.

Informal communities matter too. A lot of problems can be resolved
via social channels like Twitter or forum sites like Stack Overflow,
provided there’s critical mass around the product. It can be instruc-
tive to search Stack Overflow for questions people are asking about
the CMS you’re evaluating.! Evaluate both the volume of questions
and their content. what problems are people having? How many peo-
ple are willing to answer those questions?

Back in my corporate days, my company purchased a very expensive
enterprise content management system. I spent months trying to fig-
ure it out, and all that time, I felt like I was working alone. In the
back of my mind, I was sure that there was a group of people some-
where who were suffering through the same growing pains I was, but
I just hadn’t been able to connect. Eventually, almost accidentally, I
found a Yahoo! Group for this software, and there it was. I had final-
ly stumbled upon another group of customers of this particular ven-
dor, struggling with the same problems, and willing to talk about it.
It was revelatory, and it changed how the software was perceived and
implemented at my organization.

Documentation ranges from auto-generated API docs to blog posts to
sample code to accurate feature lists. Lack of documentation is prob-
ably Complaint #1 among developers trying to work with a vendor’s
system.

I remember months of working with a particular vendor’s software
without enough documentation. My last resort was simply to decom-

1. Bonus points if the CMS is well-known enough to have earned its own tag.

52

Things You Should Know

pile their code (undoubtedly in gross violation of their license agree-
ment), and wade through it line-by-line to figure out what was going
on.

For many developers, sample code is the pinnacle of documentation.
It tends to get vilified for encouraging blind copying and pasting, but
reverse engineering is a common way to figure a system out — give a
developer code that works, and they’ll examine it, take it apart, and
modify it to do what they want. More software has been learned in
this fashion than probably any other.

Many vendors offer “reference implementations” of their software.
For CMS, this would be a sample website the vendor uses for demos,
and offers as a “sandbox” or trial for customers who want hands-on
experience with the system. The hope is that this implementation has
enough breadth of functionality and represents good coding and us-
age practices so that it can be examined as reference.

Often, customers will start new projects from the reference imple-
mentation, modifying it for their particular needs. The advisability of
this varies greatly, depending on the quality of the reference site and
the applicability of it to the customer’s requirements. Some vendors
are horrified that customers do this, while others have specifically
designed their reference implementations for this purpose.

Look through this documentation and reference code before you buy.
Ask your developers to look through it. Make sure it’s public.

I’ve seen vendors who lock away their documentation behind a lo-
gin, which doesn’t make sense. If you can get a free account — by
joining their developer community, for example — then that’s fine,
but in some cases, vendors will only allow access to paying cus-
tomers, as if their documentation was some trade secret.

Look for third-party documentation. Are people writing about the
platform? Are there blog posts about how to implement or work with
features? Go search Amazon. Has anyone written a book about it?
Visit independent training sites like PluralSight or O’Reilly. Does
anyone maintain video tutorials on YouTube?

53

Lesson #11

The level of documentation and community activity is a reasonable
proxy for how well that CMS has been received by the market and
the level of adoption it’s received.

Finally, since that conversation with my analyst friend about Epis-
erver 11 years ago, I’ve come to understand how much partner net-
works matter, the hard way. The partner network of a CMS vendor
is your safety net. It’s the thing you can fall back on if the vendor or
integrator lets you down. It’s a soft place to land.

Partner networks vary greatly in size and intensity. To be a “partner”
of a vendor means an integrator gets some special perks — some
extra licenses, recognition, more communication, and hopefully sales
leads. In exchange, the vendor hopes that the integrator will evange-
lize their software and sell it for projects.

Sometimes an integrator only works with a single system and both
sides benefit from a close affiliation. However, it’s not uncommon
for the relationship to be asymmetrical, where an integrator is just
looking for targets of opportunity. They’ll promote a vendor’s soft-
ware if it works for them, otherwise they’ll gladly use something
else. They’re “badge collectors” who will claim expertise in any sys-
tem if it will help them obtain services work.

This means that the generic descriptor of “partner” is not absolute.
Not all partners are equal, and you can’t trust this means an integrator
actually has practical skill in a system.

A few years back, I watched a large customer purchase a CMS from
a small, little-known vendor. Unfortunately, the vendor was small
enough that this customer quickly overwhelmed the vendor’s profes-
sional services team.

The customer asked me to help them find a third-party integrator for
help. The vendor’s “Partners” page listed a dozen companies, but
every company I contacted had only done one implementation, and
had only become a partner to get a development license (a common
perk of partnership). Some of them didn’t even know their logo was
on the vendor’s website.

54

Things You Should Know

We came to understand that there really was no partner network. And
the vendor’s professional services staff was less than a dozen. There
were less than 12 people in the world available as competent engi-
neers of this system. And they were busy, all the time.

That’s not a good thing to find out when you’re six figures deep in
licensing fees.

Honestly, I don’t enjoy emphasizing ecosystems, because the lack of
one is the highest bar to entry for a new vendor to break into the
mainstream. Newer vendors have to contend with building their sys-
tem, supporting their customers, and, at the same time, convincing
new people to use it to the extent that an ecosystem develops.

It’s a classic chicken and egg situation — few people are using a
new system, so there’s little in way of ecosystem; and there’s little
ecosystem because few people are using it. In the best-case scenario,
it becomes a positive reinforcement loop. More users mean more
ecosystem, and more ecosystem means more users. But the opposite
is sadly more likely to be true. Smaller vendors can wallow in a tiny
market share and never break out because they can’t develop their
ecosystem.

If you consider the major CMS vendors compared to all the others,
the difference that stands out are the size of intensity of their partner
networks. Look outside those systems, and you’ll still find some
great software, but drastically fewer partners. Some very solid CMS
platforms might only have one or two focused partners in North
America.

I genuinely feel badly for smaller vendors that struggle with their
ecosystem. The lack of one is a huge impediment, and they’re not
easy to develop.

The fact remains that the lack of a viable ecosystem can put cus-
tomers in a very bad position. You need to ask and verify questions
about your vendor’s ecosystem, and vendors need to start cultivating
their ecosystem and partner network like it was a core feature of the
product.

55

Lesson #12

Lesson #12

A Request for Proposal can
sometimes be abusive and this
doesn’t help anyone

If there’s one thing that infuriates me, it’s an abusive RFP. You see
these every once in a while — an RFP written with no regard to the
people who have to respond to it, and sometimes even openly con-
temptuous of them.

Often, this is reflected in ridiculous timeframes. While responsive-
ness is important, and vendors certainly want to make a sale, they
have other projects they’re working on. They need time to respond
to your request.1

Other times, we see lists of hundreds of questions, many of which
are obviously never going to be reviewed and were just thrown in be-
cause someone had the power to ask them. A lot of this is systemic to
the organization,? but sometimes you can imagine a bad actor at the

1. For a large, comprehensive RFP with scenarios and demo requirements, at
least four weeks is a fair amount of time to turn something like this around. If
you want it in a week, the quality will be poor, if it's returned at all.

56

Things You Should Know

customer organization demanding responses to pointless questions as
a way to prove their own value to the organization or derail a project
they don’t want to see happen.

And sometimes, it’s not timeframes or bloated size as much as
it’s...tone. I’ve seen RFPs full of specific admonitions and punitive
requirements that sound like they were written by someone with a
mile-high chip on their shoulder who’s just looking to slap down a
respondent to make themselves feel better.

I’1l speculate on a few reasons why this happens:

* Sometimes people are just unpleasant. They’re on a power trip
and enjoy being in control. They view themselves as the pup-
peteer who holds all the strings.

» Sometimes respondents get dragged into turf wars. Certain fac-
tions inside a customer organization might not want a project to
happen, and these groups have influence over the RFP, so they
intentionally make it unpleasant.

» Sometimes there’s a vendor or integrator that the customer wants
to select (they have someone “in their back pocket™), but policy
dictates they have to issue a public RFP. They write the RFP in
such a way to dissuade anyone other than their preferred vendor
from responding.

+ Sometimes people are terrified that they’re going to get taken ad-
vantage of. They’re afraid of the respondents — sometimes ratio-
nally — and this manifests itself as a punitive process. They’re go-
ing to show you that they’re in charge, because they’re secretly
worried they have no idea what they’re doing.

2. Government agencies are famous for this. | once reviewed an RFP for a gov-
ernment agency that ran to 50 pages, 49 of which were instructions on how to
respond to the RFP. The description of services the agency wanted a vendor
to perform consisted of one single page. Every vendor and integrator can tell
you similar stories.

57

Lesson #12

These situations are difficult for the respondent. Yes, we’re in sales,
but we’re also human beings. We have feelings, we take pride in our
work, and we have lives outside the office. We don’t like working on
things that sap our morale.

Your ongoing relationship with your vendor and integrator is differ-
ent than when you buy consumer products. You have to live with
both them. You are entering into a critical relationship with both of
these organizations. The quality of that relationship matters. It can be
more or less productive, based on intangible factors like how it was
conceived.

This is especially true with the integrator. We’ll have an entire chap-
ter on this later, but know that you are, to some extent, selling your
project to the integrator.

Good integrators are in demand and often have little unused capacity
available to sell. They have to pick their projects carefully.

The opposite is also true. Bad integrators aren’t in demand. They
need any project they can get their hands on, and they’re willing to
be abused in exchange for revenue.

If you find that you can completely manhandle an integrator during
the proposal stage — you get them to agree with anything, and cut an
insanely good deal for yourself to their detriment — perhaps ask why
this integrator is so willing to tolerate your abuse? The answer should
scare you.

Vendors and integrators are not the enemy. Occasionally, you’ll work
with one and realize they’re not being totally honest or reliable with
you, but don't simply assume this. If you set up an antagonistic re-
lationship from the outset, the results are not likely to be what you
want.

I’ve simply discarded several RFPs because I took one read and re-
alized I’d never in a million years want to work for the people who
wrote it. Call it wishful thinking, but my gut tells me that most of
those projects didn’t end well.

58

Things You Should Know

Lesson #13

Know your budget target in advance
and be prepared to share it

At some point, you’re going to have to come to grips with your own
budget. Do you know what it is? Do you have any idea of how much
you have to spend?

If you’re answer is no, then you need to figure this out before you
embark on your process. You shouldn’t go into a selection process
completely blind. And you shouldn’t use it as a fishing expedition
for pricing.

Whenever [was consulting on a selection, I would push the client for
their expectations on budget. If they claimed no idea how much they
could spend, I would make sure they had as much as an enterprise
CMS vendor would require at the mid-range, and as much as an in-
tegrator would require to implement it.

If they protested at this number (which would be well into the six
figures), that was still progress. Then I could have a rational discus-
sion with them about how much budget they did have and tailor the
discussion accordingly.

When I set the expectation for an enterprise CMS and implementa-
tion, I was specifically coming in at the high end of all solutions. But

59

Lesson #13

neither CMS software nor implementations are set in stone. They can
bend and flex along multiple axes.

Consider this adage:

You can have it fast, cheap, or good. Pick two.

2

I’ve always thought this should read “eliminate one,” rather than
“pick two,” because it accurately represents that projects have inflec-
tion points. Most all projects have a soft spot on which they can flex.

* Schedule: How quickly you go from idea to launch (“fast”)
* Budget: How much the entire solution costs (“cheap”)

« Features: What’s included in the project (“good”)
Here’s how your project might flex:

* The CMO has freed up what’s left of the marketing budget, but
it has to be spent by the end of the year. You have a rigid budget
and schedule, so you’re going to flex on features by figuring out
what you can pay for and get done in time.

« The organization has given you a set budget for each year, and
laid out the grand vision for their digital strategy. They want to
know how long it’s going to take. You have a rigid budget and
features, which means you will need to flex by developing a
phased schedule which launches features in multiple cycles.

* You are required to have a specific project completed by June 30
to pass an audit. You have rigid features and schedule, so you’re
going to have to flex on budget and be prepared to pay more in
contractors to get it done’

1. For the record, throwing money at a project to get it done faster is actually a
terrible way to make a deadline and it rarely works. The legendary book The
Mythical Man Month explained this phenomenon in detail. My business part-

60

Things You Should Know

When you consider your project, know that it’s not monolithic. There
are undoubtedly some things that need to go in by launch, but there’s
likely many other features that can be phased in over time.

So when it comes time to discuss your integration budget, what do
you reveal? RFPs tend to concentrate on features and schedule, then
have an implied flex on budget. It’s common to get an RFP that boils
down to, “This is what we want, and this is when we need it by, so
how much will it cost?”

Budget is somehow always expected to be the missing variable that
vendors need to fill in.

But it’s not really a missing variable at all, is it? Because you likely
know how much budget you have. You just want a vendor to fill it in
and see if it matches the number you have in your head.

Hopefully you’re not just looking for the lowest number, because
there are so many other factors that go into picking an integrator. As-
suming you’re not, then what you’re looking for is the best integrator
inside the budget range you have.

Consider: Would you select an integrator you don’t love in order to
save $10,000? Probably not. For projects like this, customers don’t
tend to chase deals.

When we combine this with the fact that projects can flex on multiple
points, it usually makes sense to just state your budget in advance.
Right in your RFP, say how much you’d like to spend on the project.
“This is what we have, tell us how you might deliver what we want
inside that budget.”

For some of you, the hair on the back of your neck just stood up.
There are organizations that refuse, under any circumstances, to state
how much budget they have because they think they might have
more budget than the project needs, and if they reveal this number,

ner put it more bluntly: “Nine women can’t make a baby in one month.”

61

Lesson #13

some integrator is going to soak them for all of it when they didn’t
need to. Customers are afraid they’ll overpay.

But after 25 years in this industry, I find it hard to believe this is the
case. | can count on one hand the number of times someone came
to Blend Interactive with more money than they needed. Best case,
they’re somewhere in the right ballpark. Often, they’re under the
budget level they need to get to for the services and software Blend
worked with.

In these cases, we’d simply let them know the number we thought
they needed to be at and why, then work with them to figure out if
it was possible to get there. If we knew the budget range, we could
consult with the prospect to figure out how to make it work.

For every project, there are options:

* Some of your functionality might not be worth its budget. If
you’re swimming in money, fine, but you might have a feature
that’s expensive and likely won’t provide a return. We might cut
some of those.

* You can phase your implementation. There are probably some
advanced features that you aren’t going to use right away. Let’s
push those off to your next budget cycle and implement them
when everyone is comfortable with the new system and ready to
expand their skills.

* We might simply go with cheaper technology. Every integrator
has their preferred system, but they can often “step down” if the
budget calls for it.

Now, that last point may have you pointing your finger and saying,
“That’s why I wasn’t going to reveal my budget! Because if cheaper
technology will do the job, then I want them to use it!”

The problem here is that you believe that integrators will price as low
as they can, without a budget target. You think that every integrator

62

Things You Should Know

will sweat, trim, and cut their number before they put it in a proposal,
in the belief that they need to be the lowest number you consider.

But that’s just not the case. Most integrators aren’t going to compete
on price, because these aren’t “projects” as much as longer-term rela-
tionships. Most integrators know that they’ll be working with a cus-
tomer for years, so going in at a rock-bottom price is not helpful. The
customer will then expect to keep paying those low prices forever,
or the integrator will raise the price to their normal range and their
now-angry customer will go find someone else.

Put another way: If you’re hiding your budget in the hopes that an
integrator drops their price, you’re not likely to reach the goal you
really want in the long term.

Alternately, you might think that if you reveal your price, lots of in-
tegrators will choose not to respond to your RFP at all. This is un-
doubtedly true, but that’s the point. If your budget is not at a level
that an integrator is willing to work at, then why go down that road
at all? It’s not helpful to anyone to start something you can’t finish.
Your budget is what it is, so have that discussion early, openly, and
honestly.

Not stating your budget forces the respondent to make assumptions,
and sometimes they’re not accurate, which doesn’t work to anyone’s
advantage. I once passed on an RFP because there was no budget
stated and they refused to provide any insight to their range. The
features they wanted, combined with the type of organization, just
didn’t make me feel like there was going to be enough budget there.
Responding to an RFP takes considerable effort, and I couldn’t justi-
fy it based on the information and expectations I had.

In response to my declination email, I got an annoyed response that
then stated their budget, which turned out to be quite reasonable.
Their email had the tone of, “Ha! Aren’t you sad you didn’t bid
now?”

Well, sure, but I was sadder for them. My company would have done
a nice job with their project. But because they refused to state their

63

Lesson #13

budget, my only rational choice was to pass on it. As such, they lost
the opportunity for a well-prepared, informative response from an
experienced integrator. They were the only real loser in this situa-
2
tion.

Of all the advice in this book, this might be the most controversial.
There are many who maintain that your budget should remain a well-
kept secret. In my experience, I’ve found that discussions centered
around a known budget are more productive, more honest, and lay
better groundwork overall for a relationship over the long-term.

2. This is an example of where a selection consultant is helpful. If someone
hired a consultant who was familiar with Blend Interactive, then we knew the
customer had been vetted for budget. If the budget wasn’t stated, we still
knew we could trust that they were in the right ballpark.

64

Things You Should Know

Lesson #14

If you don’t know how to write an
RFP, get help

There’s a tendency in an RFP for customers to try and sound very
smart. No customer wants to seem naive, so they posture in an RFP
to try to get the vendors to believe they’re experienced and cannot be
taken advantage of.

This rarely works. I promise you that every vendor and every inte-
grator has seen more RFPs than any customer — they do this for a liv-
ing, remember. Larger organizations will have a person that literally
reads and evaluates RFPs all day long. And when you see enough of
them, it becomes obvious when someone has no idea what they’re
talking about.

Worse, a lot of posturing manifests as rigid demands on the response
format and content. When you do this, you’re going to force an ar-
tificial response out of someone, which might not be the best plan
for what you want to accomplish. Plan Y might be the right answer,
but you’re never going to see that because you specifically asked for
Plan X and refused to consider anything else.

For example, I saw an RFP once that listed this among a long, offi-
cial-looking list of “Requirements.”

65

Lesson #14

Design update plan with template, etc.

... what even is this? A plan for...updates to the design? And what
does a template have to do with it — a template for the design, or a
template for the plan? The qualifier of “etc.” is inherently imprecise.
And then this was under the heading of “Training,” which made even
less sense.

I don’t know everything, and I’'m willing to admit it. So I called the
sender and asked what this was. Honestly, I thought I’d learn some-
thing new.

But when pressed for an explanation, the woman who wrote the RFP
didn’t even know what it meant. She seemed surprised I was asking,
not because the definition was obvious, but because she expected me
to posture as much as she had. She clearly didn’t want to admit that
she didn’t know what this thing was, and she absolutely never ex-
pected me to admit that I didn’t know either.

After dancing around the subject for a few minutes, I said, “I appre-
ciate the list of requirements, but can we just propose the project as
we would build it in our process?”

Long pause, then “Sure.”
The jig was up. Her relief was palpable.

What’s terrifying is that a lot of respondents would have simply of-
fered up...something. Rather than admit ignorance, they would have
just fabricated something on the spot to sound as if they could meet
a requirement which was copied-and-pasted without any thought or
consideration.

When you posture in an RFP, you run the risk of hamstringing the
respondent. They don’t want to insult you, and they don’t want you
to think they ’re dumb, so they’ll launch into the Classic Escalating
Arms Race of BS, in which both sides try to bluff the other one in-
to thinking they know exactly what’s going on. It can be pathetically
hysterical.

66

Things You Should Know

More cynically, if you posture in an RFP and get caught, you’ve
damaged your position. The respondent now knows more about your
mindset and your level of knowledge. Bad actors will use this to their
advantage.

Sometimes, I would see an RFP that was so inept it made me gen-
uinely worry for the organization who issued it. It was painfully clear
that whomever wrote the document had little to no understanding of
the market or the software acquisition process. They were asking for
too much, providing too little information, or both.

I’ve seen customers attempt to procure half a million dollars in soft-
ware and services from a single page of bullet points. I would shud-
der every once in a while when I imagined how easily some cus-
tomers were going to be manipulated by respondents. They were
never going to get what they were looking for.

In these situations, we would always ask for a phone call to get more
information. If we were refused this call because of their process, we
would pass on the opportunity. And even if we did bid it, we would
usually always just bid a discovery engagement — essentially, we bid
a process to help them define all the information that should have
been in the RFP to start with. In effect, they would end up paying us
to help them re-write their RFP.

In one such case, a customer’s RFP had a classic list of bullet points
which barely scratched the surface of what a vendor or integrator
would need to provide a binding quote. We requested a discovery
meeting, but were denied in the interest of “fairness.” We told the
customer that we simply couldn’t respond on the information we had.

Six weeks later, we were re-contacted by the customer. They indicat-
ed, sheepishly, that the responses “weren’t what we expected,” and
asked if we would re-consider. We got our discovery meeting after
all, and eventually won the work after we persuaded the customer to
drastically limit the scope of what they were requesting.

Remember, you probably asked for a proposal from someone be-
cause they’re an expert in a thing that you are not. That being the

67

Lesson #14

case, let them be experts. At the risk of sounding harsh, the average
integrator knows how to build websites better than you do. That’s
why you’re asking them for a proposal, remember?

If you tightly script how you want a response, then you’re going to
get just what you asked for, which is something you already know. If
you give the respondent some leeway in how to respond, they’ll give
you some insight into their process, methods, and toolset, which can
be enormously valuable.

Feel free to explain what information you need to see from the re-
spondent. But don’t be overly prescriptive, or you might be missing
out on some good information.

Finally, if you have questions about your RFP, get help from a con-
sultant. Some consultants would consider a small engagement just to
review what you’re put together, to identify problem spots or infor-
mation you might be missing. Some analyst firms even explicitly of-
fer a “document review” service.

But, please, don’t try to posture or bluff your way through a complex
acquisition process without help. It won’t work the way you hope,
and you’ll suffer for it in the end.

68

Things You Should Know

Lesson #15

Scenario-based demos are helpful,
but can be restricting

At some point in the selection process, a software vendor will
demonstrate their product to you. You need to exercise some control
over what the vendors demo...but not too much.

If you let the vendor control the demo, you’ll watch something that
has very little relevance to your actual situation, and that’s so canned
and contrived that it has little chance of translating to actual value
after you’ve purchased it. You need to drive the demo toward usage
patterns to which you expect to apply the software and that reason-
ably represent your organization’s staffing model

Therefore, the most valuable and effective demos are scenario-based,
meaning you effectively state: “This is a use case we need to per-
form. Now show us how we’d do it with your system.”

For example:
Bob needs to post a press release. He has the content for the press
release in a Word document, and he has an oversized image to go

with it. This press release needs to be approved by Mary. Then
it needs to be scheduled to publish tomorrow at noon. It needs to

69

Lesson #15

have its own page with a custom URL, and it needs to automati-
cally appear on the list of press releases both by date, and grouped
by one or more assigned categories.

That’s something a vendor can work with and that a customer can
evaluate.

This specific example is a very mainstream use case, to be sure, but
it’s also helpful as an introduction to the basic editorial workflow
tools of the CMS. As this demo progresses, other questions will be
asked, and the vendor will take some detours to show you some
flashier stuff. You’ll get a nice introduction.

Beyond this basic example, your scenarios should get more and more
specific to what you do at your organization, both right now, and
things you want to do in the future.

If a vendor refuses to demo your provided scenarios, move on. If
they have had the scenarios but haven’t bothered to go through them,
then take a hard pass on that vendor. Make it clear in your RFP that
you want to see the scenarios you asked for.

But here’s a key point: allow the vendor at least a little time to demo
what they want you to see as well. As someone who did these demos,
I was frustrated when I wasn’t allowed to show a customer anything
else, because occasionally I had functionality that I was reasonably
sure would have benefited them greatly. Leaving some open-ended
time for a vendor or an integrator to spread their wings a little and
show you what makes their solution unique can be genuinely inter-
esting, educational, and even inspirational.

Another reason for that second one: if you dictate all the scenarios,
you’re going to sit and watch the same things over and over.

I once sat through five vendor demos over two days, working from
a list of scenarios I had written. By the end of the two days, I was
a little numb. I realized that all the vendors performed basically the
same way, and they all ran together in my head.

70

Things You Should Know

At the end of each scenario, every vendor would sit back, smile, and
say something like, “I think you can see how unique we are in our
ability to do this.” By the fifth demo, I was snarky enough to tell the
vendor that the four others had basically shown us the exact same
thing.

But the problem was this: we didn’t actually know which vendor was
any better than the others, because we asked them all to do the same
things, and they all did them acceptably well. All we knew after-
wards is that we couldn’t eliminate any of them based on what we
had seen. The team had seen the same basic functionality five times
and was left to answer the question of which version they liked bet-
ter, and the gradients were sliced pretty thin.

Feature differences can sometimes be binary — one vendor has some-
thing, while another vendor doesn’t. But lots of vendors are at parity
with one another, and so your differentiation becomes a process of
teasing apart small differences and simply deciding which one you
like better.

Sometimes it’s just preference. Two vendors might show you the
same feature or process, and either version will work just fine. So
you either eliminate that as a decision point, or just pick the one that
somehow agrees with you more. Sometimes this is frustratingly un-
scientific, for both sides.

Scenarios based on your current experience are backwards looking.
You’re writing them based on what you know right now, about your
process as you’ve been living it. To move the organization ahead,
you need to allow for at least a small amount of forward-looking pro-
jection of things you might be able to do down the road. Give ven-
dors some wiggle-room to show you how their solution might im-
prove on what you’re looking for.

And, while it’s your right to drive what you want to see, have some
consideration for the vendor’s position when developing and prepar-
ing for a demo.

Some caveats:

7

Lesson #15

* Be reasonable about time. If you’re asking for something to be
custom developed for your demo, you need to give the vendor
time to do this. Don’t ask for the world on one week’s notice.

* Be reasonable about scope and depth. The vendor might fully
develop part of the demo, and then talk through other parts, ex-
plaining what they would do and how it would work, in order to
deliver what you want. Be accepting of this. If you’re not paying
them, then understand that they might not show you something
end to end.

* Be reasonable about code quality. A lot of these custom demos
are thrown together quickly. This will not be production-level
code with fault tolerance and error handling. It might run slowly.
It might throw errors. Debugging takes time, and unless you have
paid for production-level code, you need to look past the occa-
sional error.

Custom demos are often fun for vendors and integrators. They get
to see and solve new problems. But it’s frustrating when a customer
somehow expects perfection in a custom demo that they’re not pay-
ing for and have allowed you one week to prepare.

And, of course, keep it all in perspective, because a demo is a lot like
a wedding — it’s a tightly choreographed event designed to run on a
specific schedule with participants who are artificially engineered to
look as good as possible. The events of a wedding bear virtually no
resemblance to the marriage that follows.

Likewise, the software is never going to look better than it does when
it’s demoed by the vendor. I’'m only exaggerating a little when I say
that’s all downhill from there.

72

Things You Should Know

Lesson #16

Pay careful attention to how much
vendors and integrators are willing to
teach

Vendors and integrators, if you want to sell, you need to teach.

Your job is to get the customer to grok the system to some level.
“Grok” is one of my favorite words, from Robert Hienlein’s Stranger
in a Strange Land.

Grok means [...to] understand it so thoroughly that you merge
with it and it merges with you.

So, to grok something means to understand something in such a way
that your knowledge goes beyond simple task completion. When you
start to grok a system, you can be presented with a scenario not ex-
plicitly covered in the manual or your training, and you can use the
principles you’ve learned to extrapolate and speculate on ways to
solve the problem.

This matters, because when someone groks something, they usually
enjoy working with it. When they enjoy working with something,
they usually want to buy it.

73

Lesson #16

Customers, how well vendors and integrators do at teaching is a
handy look forward to what they’re going to be like to work with in
the future.

While it may be hard to get down to the pure “bones” of a system
during the evaluation process, a sales team needs to get you to some
solid level of understanding, because that breeds comfort.

Some questions to think about:

* How much did the vendor’s pitch actually discuss the product
and its capabilities? And how much was vague platitudes and un-
verifiable promises about what their system might do for you?
Did they spin tales of success more than they showed you the
product?

* Do you have an over-arching understanding of how the system
works? Is there a clear mental model in your head of how the big
pieces fit together?

* Do you have unanswered questions about concepts that you
specifically indicated were important to your organization?

* How much live demo time did you observe? How much time
were you able to get hands-on with the product?

* How responsive was the vendor to your questions?

» Did the vendor ever concede a weakness or admit to something
that their system was not designed for or not the best at? Or did
they maintain that it did everything perfectly?

* When presented with a problem the software didn’t solve, did the
vendor show you how some underlying principles of the system
might be employed to find a creative solution?

Helpful vendors will talk o you, not at you. They’ll listen to your

questions and provide thoughtful answers, even if it means conced-
ing a weakness.

74

Things You Should Know

If the vendor can’t explain their system in general terms you can un-
derstand, be suspicious. Perhaps their system is poorly architected
from a conceptual level. Perhaps they’re glossing over problems.
Perhaps they’re hard people to work with. You have a right to under-
stand, and they need to teach you.

If you don’t feel some level of mastery over something during the
sales process, I suspect this confusion will just deepen once you pur-
chase the product and dig into it. Don’t buy something you don’t un-
derstand, or don’t feel like you can understand. Paying six figures
isn’t going to magically eliminate confusion.

A purchasing decision is fundamentally about conquering fear. I’ve
seen customers pick less sophisticated software primarily because
they felt they understood it. And in understanding it, they were no
longer afraid of it.

When you’re spending a non-trivial amount of your budget, a vendor
owes you an explanation of how their system works, both at a prac-
tical level and a theoretical level. Make sure you have at least some
foundational understanding of how the big pieces work, not just how
to put Tab A in Slot B.

75

Lesson #17

Lesson #17

It’'s easy to get excited about
something new and interesting

Humans love novelty. We love to see a new and different way of do-
ing something. And often, we just like change for the sake of change.

Change can make our productivity and effectiveness increase for no
reason other than the change itself. The “Novelty Effect” says that
new technology will cause increased interest in its purpose, which
will temporarily provide better results. The effect tends to wear off
over time as the new technology gets routine and boring."

Remember how Netflix used to be amazing? When I first got a
streaming box, [watched movie after movie after movie, because the
mere idea of having any movie on-demand was amazing to me. As
time wore on, I watched less and less because I started to take the
functionality for granted and it no longer seemed amazing. Now all I
seem to do is browse previews without actually watching anything.?

1. This is sometimes mistaken for The Hawthorne Effect, which says that the
novelty of being observed and measured will temporarily increase productivi-
ty. It's not quite the same thing.

76

Things You Should Know

Customers, you need to be careful that you evaluate demonstrated
features in terms of their actual value, not just their novelty com-
pared to what you currently have. How a different CMS does some-
thing might be new and interesting, but the end result actually better?

When humans are exposed to a new way of doing something, they
often get smitten with it and think it’s a leap forward. In reality, they
may just be bored of the way they’re doing things now, and they’re
confusing novelty for actual productivity gains.

This is exacerbated by the mindset of a team searching for new tech-
nology. Remember that your current CMS represents all the reasons
why you want a new one. If you loved your current CMS, you prob-
ably wouldn’t be out looking for something else. The current CMS
is boring and tedious, so anything that’s new symbolizes a bold and
exciting new future where all your problems are solved. We mentally
extrapolate a new system to magically fill in any gaps or problems
we’re struggling with, and this is a narrative that vendors are only
too happy to reinforce.

I’ve been doing this for a couple of decades, and I still have to watch
out for this in demos. I’ve had multiple vendors show me their sys-
tems which seemed very glamorous and exciting...until I reminded
myself that they didn’t actually show me anything new, or anything I
couldn’t already do.

A couple of years ago, my partner and I got a demo of a popular,
emerging CMS. I loved it — it looked amazing, fresh, new, exciting.
The user interface (UI) took advantage of all the new client-side ca-
pabilities, and it was skinned with the latest design trends. I imagined
all the amazing things we could do with it.

2. The Onion nailed this: Netflix Introduces New ‘Browse Endlessly’ Plan
(https://www.theonion.com/netflix-introduces-new-browse-endlessly-
plan-1819595604)

7

https://www.theonion.com/netflix-introduces-new-browse-endlessly-plan-1819595604
https://www.theonion.com/netflix-introduces-new-browse-endlessly-plan-1819595604
https://www.theonion.com/netflix-introduces-new-browse-endlessly-plan-1819595604

Lesson #17

Then my partner rained on my parade with, “It looks great, but I can’t
see that we can do anything new with it.”

Sadly, I had to agree. We were already using equivalent platforms so
there just wasn’t a value-add for us. None of the systems we were
using looked and operated quite as slick on a Ul level, but UI polish
doesn’t solely make for a great CMS. And, sure enough, when we got
“under” the UI to deeper architectural considerations, the new CMS
was lacking.

And that should be a benchmark for you: if you temporarily ignore
Ul improvements, can you literally do something new with what
you’ve just seen? True, a new CMS might make an existing process
easier, and there’s some undeniable value there. But does what
you’ve just seen in this snazzy demo actually expand your capabili-
ties? Will you derive some differential benefit from it?

We also talked earlier about not be blinded by “revolutionary” fea-
tures to the point where you ignore the fundamentals. There are a lot
of base, expected features to a CMS. Things like modeling, permis-
sions, workflow, version management, version conflict management,
etc. Don’t be so overwhelmed by something new and exciting that
you overlook gaping flaws in the fundamentals.

Remember too that the joy and accomplishment of learning can mas-
querade as an improvement. Some systems can be a challenge to get
on top of, and the thrill of mastery can be deceptive.

When I finally got a particularly challenging CMS figured out, for
example, I got a rush of endorphins and happiness. And when that
wore off, I realized I could basically do the same things as I could do
before in a dozen different systems...I could just also do them in yet
another CMS now. Outside of the novelty of being able to do this in
a new system, I really wasn’t any better off than I was before.

I’ve often compared this to learning how to say “where is the bath-
room?” in Klingon. You might feel like you’ve accomplished some-
thing, but you really haven’t done anything except re-learn what you
already knew in a language that you’re probably never going to use.

78

Things You Should Know

Sure, it’s an interesting party trick, but you’re simply no better off in
any practical sense than you were before.

As I write this in early 2020, the business phrase du jour is “move
the needle,” as in “We hope our Q1 campaign will be able to move
the needle.”

As much as I dislike trite sayings, there’s some depth to this one. If
you imagine an instrument panel full of gauges, the needles in those
gauges are impartial — they don’t care what you do, they simply react
to changes in measurable values. In marketing, we often do a lot of
activities and make a lot of noise, but if we don’t change some mea-
surable value somewhere, the needles don’t move.

Remember, just because Vendor X does it a little differently than
Vendor Y doesn’t necessarily mean it’s better. It might just be...well,
different. And being different doesn’t move any needles.

79

Lesson #18

Lesson #18

RFP responses are often a team
effort of multiple providers, which
can be confusing

We’ve discussed this a bit before, but it bears repeating: Software im-
plementation projects are usually a combination of product and ser-
vices. Consequently, these projects exist on a spectrum of the num-
ber of parties involved.

On one extreme, perhaps you’re planning to integrate the software
and host it yourself. In this case, you literally only need software, so
that’s all your proposal needs to ask for. You should get responses
from software vendors for their product, full stop.

Or perhaps you’re looking at an open-source system, and you just
need implementation help. Again, you’re getting a proposal from an
integrator only.

However, the other extreme is quite common: you have nothing but
a need of varying levels of definition — exact and detailed or vague
and amorphous — and you’re looking for a coterie of vendors:

1. You need someone to plan the content, design, and marketing
strategy

80

Things You Should Know

You need new CMS software

2
3. You need someone to integrate it to meet your needs
4. You need someone to host the resulting website

5

You need someone to support it over time

There are all sorts of companies to cater to these needs. The problem
comes when the RFP is sent to organizations not capable of provid-
ing all the needed services, and then responses are evaluated with
some bias against an assembled response.

Looking at the list of needs above, understand that no single organi-
zation will probably do all of that. Most integrators work with soft-
ware they didn’t develop — they partner with a commercial vendor,
or they use open-source software developed by a larger community.

Some vendors do offer professional services, but often this is just ad-
vanced technical support, and doesn’t include entire site implemen-
tations. If the vendor does do full implementation work, there’s very
little chance they would also provide the marketing strategy services
necessary for higher-level site planning.

So, where do you send your RFP?

You can divide it up into pieces — a software RFP, a hosting RFP, a
services RFP, etc. — and send them to different companies. Howev-
er, this is a lot of work, and the pieces don’t exist in isolation. The
software vendor will need to work with the integration vendor, the
support vendor will need to work with the hosting vendor, and so on.
Now you’re in the position of both evaluating the vendors and eval-
uating whether or not they can work together.

More likely, you’ll send a single RFP for all services to a single re-
cipient and understand that they’ll recruit other companies to fulfill
all your needs.

« If you send the RFP to a software vendor, they’ll select an inte-
grator to provide that part of the response

81

Lesson #18

« Ifyousend the RFP to an integrator, they’ll select a software ven-
dor to provide that part of the response’

The result is that the response to your RFP will be a combination of
companies who claim they can work together to do what you need.
By submitting a combined response, the group of companies is tac-
itly certifying they have self-vetted their skillsets and relationships
and they believe they’re offering full coverage and coordination to
the problem presented in the RFP.

Often, questions in the RFP alternate between those directed to a
software vendor, integrator, hosting vendor, etc. When these compa-
nies come together to coordinate a response, they have to negotiate
who is going to answer what.

However, some customers still get confused by this. They expect a
seamless, uniform response, and they have trouble processing a col-
laborative response from more than one party. And sometimes they
don’t understand this before they write the RFP.

To sort this out, you need to understand the relationship between the
vendor, the integrator, a bunch of other service providers, and you.
When the software is sold, do you still have a relationship with the
vendor, or does everything go through the integrator? What if you
and the integrator have a falling out? Will the vendor help you find a
new integrator?

Furthermore, for the purposes of the demo, you need to know who is
showing what. If a vendor and an integration partner are combining
on a demo, is the project going to be vendor-led or integrator-led?
These relationships run the spectrum — in some cases, the integrator
is just kind of along for the ride or vice-versa. Who is your prima-

1. “Select” is probably not accurate here. Very rarely will the integrator survey
the entire market and select a vendor just for your project. More likely, they’ll
just propose the vendor they use for everything else. The only selection crite-
ria will likely be what they believe your budget capacity is.

82

Things You Should Know

ry relationship going to be with? Know that before you agree to buy
anything.

If you’re determined to only have one company to deal with, then I
recommend selecting an integrator — either one who represents the
software vendor you’re interested in, or one from which you’re will-
ing to accept whatever software they believe is right for your project.
Look back at the list of services you might need, and it’s clear that an
integrator has a better chance of providing most of them. Most can
do all the strategy, planning, and implementation work, and many of-
fer managed hosting as well.

You might still have a separate software vendor, unless the integrator
somehow “fronts” the vendor.

1. The integrator might implement an open-source CMS, which, as
we’ve discussed before, doesn’t have formal vendor representa-
tion

2. The integrator might resell the vendor, which means that all busi-
ness dealings with the vendor are “proxied” through the integra-
tor

Only in those limited cases are you genuinely going to deal with a
single organization.

Yes, it would be wonderful if everything was handled by one compa-
ny so you always knew who was responsible for what, and you never
had to worry about communication issues between parties. But this
usually isn’t realistic.

So, be flexible about responses. You might want a clean, single-
sourced relationship, but don’t automatically reject other options.
You can probably get the same result you’re looking for around ac-
countability, it just takes clear communication about your concerns.
The best you can do is ask good questions and make sure you’re clear
on who is responding to what.

83

Lesson #19

Lesson #19

If you have no CMS experience, get
help for your evaluations

Picking software is usually a problem of information asymmetry. In
most cases, the vendors and integrators will know more than cus-
tomers, just because they do this all the time. Vendors sell software
all day long, and integrators do dozens of implementations a year,
but customers maybe do a project like this every five years, if that.

The industry moves fast. There’s a good chance that the technology
and the content environment has changed remarkably from the last
time the customer changed their website.

We used to just build simple web pages, now we publish content into
all sorts of channels. We used to generate HTML pages server-side,
now we’ve built entire applications from JavaScript which run in the
browser. We used to have all our content in a single CMS, now we’re
aggregating content from all sorts of different sources.

Additionally, CMS architectures can be confusing, and different sys-
tems sometimes have wildly different ways of doing things. There’s a
temptation to concentrate on the methods rather than the results, and
get hung up on how a system does something, rather than what it’s
actually doing. It’s like interrogating a car salesman about the dis-

84

Things You Should Know

placement of the engine, how many cylinders it has, and what kind
of gas it takes, only to find out that it’s electric.

Occasionally, this will cause customers to fixate on odd reasons for
elimination. This can be frustrating for the vendor and the integrator.

These reasons make sense to the customer based on their perspective,
but they either don’t understand how factual the reason really is, or
they don’t understand the relative priority of it. Sometimes, they just
have some vague, uneasy feeling about the software that they’re sub-
consciously projecting onto a weirdly specific reason to justify an
elimination in their own mind.

Two examples, one of a feature and one of a service.

* During a selection process I was managing, a client didn’t like
a CMS because, “I don’t like how when you rollback to a prior
version, it just copies that old version and makes it the newest
version, so you have another version.” This statement is not un-
true, and they were right in the sense that you do get two similar
versions now...but this is just the way most CMS software works.
It’s not an outlier, so it’s not like this is the only system that does
this, and all the others will “solve” it.

* While we were selling as an integrator, a client started to question
us deeply on how many implementations we had done on Mi-
crosoft’s Azure cloud-hosting platform. We had done exactly one
on Azure, but we’d done dozens on Amazon’s AWS platform and
we were experts in the CMS itself. I had to resist the urge to tell
the customer, “This is just not important. AWS and Azure are
not that different, and we know the software so well that this just
isn’t going to matter that much in the big picture.” We won the
engagement, but I was nervous we were going to be eliminated
for a reason I knew wasn’t relevant to the overall success of the
project.

In both cases, the customer is concerned about something unneces-
sarily.

85

Lesson #19

In the first case, it’s because they’re not familiar with systems; in
the second, because they’re not familiar with integrations. In the first
case, the reason was not valid; in the second, it was valid, but just not
that important.

How does a vendor or integrator handle this?

When these situations come up, it’s hard for the provider not to sound
arrogant (“Trust me. I know this better than you.”) or like you’re
deflecting valid problems (“Yeah, the engine is missing, but have
you seen these amazing floormats?!””). Most integrators have a vastly
wider frame of perspective than the customer, but they’re hobbled by
the inherent conflict of interest that the customer is convinced will
influence their opinion.

If I was managing a selection process, I had no problem telling my
client that their reasoning was invalid. But, if I was the one sell-
ing, it was harder because the process is easy to frame in adversarial
terms — a salesman is viewed as having a clear priority above the cus-
tomer’s best interest, and the customer will evaluate everything they
say in light of that. With some hard work and honesty, I would have
built up trust and credit with the customer to the point where I could
overcome it and steer them in the right direction, but that’s neither
automatic nor easy.

My only advice here is to ask questions judiciously and carefully, to
figure out the relative importance of your concern. If something is
troubling you, explain what your desired end state is, and evaluate
the resulting solution, not necessarily the process. I’'m not saying the
process doesn’t matter, but think critically about whether the vendor
or integrator is getting you where you want to go, just via a different
route than you expected.

Additionally, talk about concerns internally as a group. What you
need to avoid is one person harboring an issue which manifests as
projected negativity about the entire proposal, when their specific is-
sue could be resolved if it was surfaced and discussed.

86

Things You Should Know

Look for the “question behind the question.” Back to the versioning
example from above, some investigation was needed about why this
person was concerned about rollback resulting in two versions. It
turned out they were concerned about a proliferation of versions af-
fecting the compliance process. This was resolved when we talked
through it and demonstrated that compliance would be more impact-
ed by a “true” rollback to a prior version, since then each version
could represent what the content looked like at multiple points in
time, whereas at creation of a new version was timestamped and
therefore more accurate. In the end, the “problem” was actually an
advantage.

Finally, seek help with your evaluation if you’re still not comfortable
with your level of experience, either with software, with integrations,
or both. Consultants exist to help you identify issues, clarify them,
put them in priority and perspective, and ultimately find answers to
them.

You need to lean into issues by asking questions, forcing discussion,
and keeping an open mind about the responses.

87

Lesson #20

Lesson #20

An adversarial relationship with your
integrator is never helpful

People love to negotiate. We’re compelled to seek “a good deal” on
everything.

We tend to frame selling situations in adversarial terms. It’s us
against them in a zero-sum game. Whatever they get, we don’t get,
and vice-versa.

Sometimes this is appropriate. If you’re negotiating on a 2009 Toyota
Camry for your teenager,’ then sure, fight to the death with Larry the
used car salesman. Take him to the cleaners. After all, you’re nev-
er going to see Larry again. Once you drive a used car off the lot,
it’s your problem, and there are hundreds of repair shops in town, so
your experience with Larry will be over.

Your CMS implementation, however, is different. It’s not something
you buy and walk away from. You’re probably going to be working

1. 1 did this exact thing once. It cost $4,500 and has 225,000 miles. In Camry
terms, this means it’s just getting broken in.

88

Things You Should Know

with your integrator for a long time. Your relationship with them
matters. If you try to be too adversarial, it can backfire.

If the integrator is any good, then they’re in demand, and they’ve
probably set rates based on that demand. Since they’re still in busi-
ness, they likely have people willing to pay them the hourly rate
they’re asking and work within their scheduling restrictions.

And you want to pay them 60% of that rate instead? And you’re de-
manding that they start on your project tomorrow? How do you ex-
pect that to work out?

When your integrator’s capacity gets tight, you might be competing
for their attention with other clients. They’ll have to make decisions
about how to organize and prioritize their workload. When this hap-
pens, I promise that you don’t want to be “the cheap client” or “the
unreasonable client” or — gulp — both.

Opportunity cost matters.? In services work, when you’re doing any-
thing at a fraction of your rate while full-rate work exists, you’re ef-
fectively paying someone the difference between the discounted rate
and your full rate.

If a company is willing to lose money to work on your project, you
need to ask yourself why. There might be a valid reason — perhaps
your work is easy and they can staff it with cheaper talent, or perhaps
you’re offering a larger, longer project that increases their utilization
rate® — but it usually means there’s no opportunity cost to lose, which
means they have no other work paying them a higher rate.

2. Opportunity Cost is what it costs to do lower-priced work. If Project A pays
$100 and Project B pays $150, and they are otherwise identical, then it effec-
tively costs you $50 to do Project A instead of Project B.

3. Utilization Rate is the percent of an employee’s time which is billable. If you're
paying a developer for 40 hours, and they can invoice 30 of them, that’s a Uti-
lization Rate of 75%. Smaller projects with gaps between them will drive down
the Utilization Rate, which is why service providers like longer projects to
which employees can apply a steady stream of billable hours.

89

Lesson #20

When I was in services, I occasionally discounted, but only in ex-
change for something else of value — usually a large advance pur-
chase of hours, or a contractual baseline of hours purchased per
month. Even then, we had sufficient reserves of work that we were
hesitant to compromise for anything less than our full rate.

If a vendor or integrator will let you get away with cutting their rate
while getting nothing in return, that’s probably not a good sign.

It’s also worth noting that hourly rate is a terrible metric of value.
If someone is charging $150 an hour, and someone else is charging
$300 an hour, does that mean the second person is worth twice as
much?

The idea of “value” when paying a set rate for an hour of work de-
pends on a few things:

1. Productivity: How much do they get done in an hour?

2. Quality: Was that work done well, or did it cause problems and
have to be re-done?

3. Utility: Was what they did even the right thing to do in the first
place? Are they giving you good advice?

These factors make it difficult to compare rates across integrators.
The person to whom you’re paying $150 an hour won’t look so cheap
when they take three times as long to deliver anything. Remember,
if someone consistently takes twice as long to do something than it
should take, then their hourly rate is effectively double what they
quoted.

When negotiating services, understand that you’re really negotiating
the assumption of risk. You’re deciding who is going to own the risk
of loss if things don’t work out.

A safe rule here: If someone accepts a risk, they will seek to be com-
pensated for it.

Let’s look at risks on both sides:

90

Things You Should Know

« The integrator’s risk is that they will have to expend more paid
labor than they receive in revenue. The customer might have re-
quirements that were hidden or misunderstood that the integrator
has to fulfill.

* The customer’s risk is that they will pay for something — or pay
more than they planned for something — and not receive what
they were promised. The website might not launch, or it might
launch and have stability problems or not have all the functional-
ity they were promised.

Both sides will seek to either reduce these risks or be compensated
for accepting them.

* The customer will try to cap the cost of the project as much as
possible — everyone wants a “fixed fee.” This cap represents a
risk for the integrator because the requirements might expand but
the revenue from the project will not.

« The integrator will try to reveal all requirements so there’s clear
agreement on what they’re responsible for. If the requirements
are vague or unknown, the integrator will (1) not commit to a set
price, or (2) pad the quoted price to ensure that they’re covered
if the requirements expand. If the requirements don’t expand, the
integrator gets to keep that extra money, which might seem like
a windfall, but is really just compensation for the risk they as-
sumed.

What should be clear from both those items is that the requirements
of the project are the key point of negotiation — they will both deeply
affect both parties in the project. It’s in everyone’s benefit to get all
the requirements out on the table as unambiguously as possible.

What you’re trying to avoid is a hidden or unknown requirement that
comes up after the price has been set. Unfortunately, this still hap-
pens all the time, and then the disagreement becomes whether or not
both parties knew about the requirement.

91

Lesson #20

Ideally, you would fall back to project documentation, but sometimes
that’s incomplete, non-existent, or the parties will claim it doesn’t ac-
curately represent what was discussed or assumed.

When disputes like this arise, who takes the loss? It depends on a lot
of factors, but unless some fault is clear, then one side is going to
simply concede or negotiate the loss in hope of benefiting the long-
term relationship. More than once, my company provided free labor
to salvage or improve a relationship in the longer term.

This means it’s to your benefit that the integrator can see a genuine,
profitable long-term relationship with you. If they can’t, then there’s
nothing to work toward, and they’re much less likely to work with
you when disputes like this come up. Worst case, if they know the
relationship with you is over once the project is complete, then they
have nothing more to lose so their negotiating position becomes very
rigid.

Some customers think that strict contracts are the ultimate protection
— all they need are ironclad clauses and penalty payments if the pro-
ject runs off schedule. This is fine, but remember that any smart in-
tegrator is going to want to be compensated for risk, and a penalty
payment represents a risk. If you want a $1,000 discount for every
day that the project is late, then the integrator is going to mark up the
cost to balance that risk out.

Additionally, before getting too smug about your punitive and air-
tight contract, you might want to role-play your worst-case scenario.
If the project runs off the rails to the point where you start to lawyer
up, how do you think that’s going to play out? The legal system
doesn’t turn on a dime.

If you do actually sue your integrator, understand it might be years
before you’re compensated — if at all — and that won’t help you in
terms of this specific project. If anything, it will set it back further
since you’ll clearly have to find another integrator.* You may win in
the long term, but your project is still going to fail in the short term.

92

Things You Should Know

The basic point is this: Your relationship with your integrator is like-
ly to be a long-term one, and it needs to be mutually beneficial to
both sides. When one side no longer feels like there’s long-term val-
ue, then it becomes difficult to work through any issues. And there
will be issues.

No relationship is proven until it’s tested. The honeymoon will end
at some point, and you don’t really know the other side until you’ve
had a disagreement and worked through it.

Remember, this is not like buying a used car. This relationship is not
purely adversarial. You need to be concerned with the well-being of
the other party, because their long-term success will very much af-
fect yours.

4. Also worth noting: If your new integrator knows you sued your last one,
they’re going to make assumptions about you, which they might interpret as
risk. They will build in compensation for this. If a customer is difficult, word
gets around — this is a smaller industry than you might think.

93

Lesson #21

Lesson #21

The lure of “out-of-the-box”
functionality is usually misplaced
and illusory

“Out of the box” (OOTB) is the marketing phrase I probably dislike
the most. These are things a system supposedly does with no devel-
opment or configuration, as in “How much does the system do out of
the box?”

OOTB isn’t inherently bad, it’s just misunderstood and frequently
misrepresented. If a vendor is honest about their product’s capabili-
ties, and customers know and understand what they’re getting (and,
more importantly, what they’re not getting), then some OOTB func-
tionality can be positive. But, sadly, that’s rare on both counts.

Having a lot of OOTB functionality is invariably marketed as a good
thing. If a system does a lot “out of the box,” then that’s great, and
supposedly the sign of a competent system. If the system arrives
“unassembled” and has to be developed, then this is a sign of a bad
system, like when you’re having to assemble toys until the wee hours
of Christmas morning.

I was initially tempted to say the phrase is dishonest, but it might
not be — the software being advertised might actually do a bunch of

94

Things You Should Know

stuff “out of the box.” Everything does something out of the box, the
question is really one of quality and applicability. Is the OOTB func-
tionality that’s offered any good, and does it apply to what you want
to do?

The truth: What a CMS does OOTB is probably not specifically ap-
plicable to your situation. It’s usually very general, and there’s only
a slim chance it works the way you want it to work. A system can’t
be instantly good at everything. So it’s either poor at a wide range of
functionality, mediocre at a smaller range, or actually good at a nar-
row range.

I’m reminded of the Danish physicist Niels Bohr, who said: “An ex-
pert is a person who has made all the mistakes that can be made in
a very narrow field.” To be really skilled at something, you have to
narrow your field dramatically.

A lot of allure of OOTB is for customers who had a bad experience
with whomever was integrating their website, be it their internal
team, or an external integrator. This was often manifested in long de-
lays between request and delivery, and therefore the customer mind-
set is that the end user should be able to do everything without hav-
ing any external help — we just push some buttons and everything
works...

...until it doesn’t.

Beyond very basic websites, I’ve never seen the OOTB story end
well. As mainstream as your use case is, [promise there’s something
that will be different than whatever was “in the box.”

Pre-built features can only address “patterns.” These are common us-
age scenarios that the vendor can predict in advance, and develop
pre-built solutions for. The value of this depends on the strength of
the usage pattern — is it something that everyone using this genre of
software wants to do, all the time?

For some types of software, this might be true. Consider accounting
software — there are a lot of patterns baked into accounting that

95

Lesson #21

are true throughout that industry. The patterns in accounting are so
strong they’re built into a set of guidelines that students learn in col-
lege called the Generally Accepted Accounting Practices (GAAP),
and sometimes they’re even legally enforced by organizations like
the Federal Accounting Standards Advisory Board (FASAB). Large
swaths of accounting practice are factual, non-debatable, and en-
forceable.

There is absolutely no equivalent for GAAP or FASAB in digital
marketing. A “best practice” in digital marketing is a glorified opin-
ion, perhaps qualified by “this worked for me.”

Occasionally, you see strong patterns in certain applications of CMS.
Intranets, for example — employees interacting with company data
fall into common usage scenarios (searching an employee directory
for a phone number, for example). The “intranet-in-a-box’ market is
quite strong because the usage patterns in that space are relatively
well-known. They’re narrow and deep.

When considering a mainstream CMS — which is a generalized
framework for managing an open-ended repository of any kind of in-
formation with the intention to deliver it through myriad channels to
a wide variety of audiences — the patterns are much weaker. Every
client wants to do something a little bit differently, because they
think their customers are going to interact with their particular or-
ganization and information in unique ways. The usage patterns are
broad and shallow.

You’ll usually always have to modify the system to an extent that re-
quires a technical resource — hence our usage of the word “integrate.”
And systems that have gone out of their way to build a lot of OOTB
functionality will usually have many built-in paradigms and method-
ologies that differ from how you want the system to work, or how
your developer thinks it should work. Working around how a vendor
built an OOTB feature always takes more time and is less functional
or stable than if the vendor just provided the tools for a developer to
fine-tune it from code to start with.

96

Things You Should Know

This is called “The Last 10% Trap.” The first 90% of functionality
is handled OOTB, but trying to get that last 10% of what you want
ends up taking twice as long as that first 90%, because you’re work-
ing with things that weren’t designed to change. But by that point,
you’re in too far to back out — you’re trapped.

A mobile home is a way to get shelter quickly, but when you need
to add two bedrooms, well, good luck with that. You either live with
the limitation, modify it foundationally so it doesn’t much resemble
what you started with," or throw the entire thing out and start with
something built in a more foundational, expandable way.

Every feature decision is based on the opinions of the developer who
designed it. Systems that can only work as-designed are said to be
“highly opinionated.” These opinions can be rigid, and you might not
agree with all of them, but they enforce their opinions, whether you
agree or not.

Unless you’re totally on-board with the opinions of the feature, the
tail is going to wag the dog. You’re going to compromise your re-
quirements because “that’s the way the software works” and it’s just
too hard to change.

There’s a balance, of course, and I’m not advocating that you devel-
op everything from scratch. Competent systems, however, have com-
mon-sense boundaries around what has to be built from scratch, what
can be configured from code, what can be configured from the inter-
face, and what they claim “just works” OOTB.

When you remodel your house, you can move furniture around and
paint, and maybe knock down an interior wall or two. At some point,
you will run up against a load-bearing wall that holds the roof up.

1. A friend once explained this by saying they could technically win the Indy 500
by modifying a 1973 Ford Pinto. But by the time they were done, their Ford
Pinto would look and function exactly like an Indy car. Also, there wouldn’t be
any single part of the Pinto left remaining.

97

Lesson #21

You can’t knock this down yourself, and you’ll have to call a con-
tractor to perform a more complicated building project.

Different CMS systems have different numbers and placements of
the load-bearing walls. You need to find out where these are. If a
system claims it has none and you can “gut the entire house” if you
want, be skeptical.

A decade ago, a particular CMS advertised itself as having a library
of pre-built components, and all you had to do was “drag them out on
the page.” In reality, the widgets were horribly designed, generated
terrible HTML, and could not be changed — all the HTML code was
compiled directly into them. I did 25+ implementations with this sys-
tem, and never used the OOTB components even one time. I spent
most of my time — and my client’s budget — working around the lim-
itations these components imposed.?

If you’re still convinced you want a system that’s promoted as having
everything OOTB, then know you’re agreeing to this statement

I completely trust the opinions of whomever designed and built
this feature, and I swear I will use it only in the way it was intend-
ed and mercilessly suppress any desire to ever customize beyond
the specific options they have built into it. I promise to be happy
with what I got.

Put another way: What is driving the final product you are launching
— your vision, or the features in the CMS? If the latter, then sure, buy
something that works only one way and let it define what you re-
lease. But if you have a specific plan you want to execute to arrive
at a specific final product, then you need a framework on which you
can build.

2. | went to this company’s annual customer conference once. Every session
seemed to be a lesson in how to rewrite massive sections of the CMS to do
what you really wanted to do, to the point where the original CMS was almost
unrecognizable.

98

Things You Should Know

Lesson #22

Poor governance and vague
ownership do far more damage than
a lack of technology

Humans are good at projecting issues. We take issues that come from
a specific problem, and we project (verb form) them onto something
else. We often do this with organizational issues by making them
look like technology issues.

Customers will sometimes get into deep arguments internally about
features and functionality, when they’re really talking about larger,
underlying paradigms of how a CMS exists within their organiza-
tions. They think they need “digital transformation,” when they real-
ly just need to resolve some basic organizational issues — or at least
discuss them to some degree before embarking on a large-scale im-
plementation project.

Customers are taking the real problem and morphing it into some
other issue — like the lack of brand-new software — because that’s
easier to discuss. The lack of software is a clear gap that can be filled,
thus re-formulating the problem into something binary and solvable:
“We don’t have The Thing™, but we can get The Thing™, and that
will fix the problem!”

99

Lesson #22

When the problem is hard to solve, we tend to turn it into a straw-
man’ problem — a fagade of the actual problem that’s easier to solve.

These issues inevitably poke through the surface when discussing
staffing, management, or ownership issues with the website. Many
organizations have defaulted the website ownership to Marketing,
but then never give them the tools or autonomy to make it work.
Marketing ends up fighting for development resources with IT, when
IT has conflicting priorities between the website and other pressing
infrastructure issues.

This is often the real problem. But it’s buried under layers of mis-
understanding, lack of communication, and sometimes outright ani-
mosity. Organizations usually find it’s easier to just throw software
at the problem.

I remember a discussion about a website which contained a detailed
and complex mortgage loan application. There was lots of disagree-
ment about all sorts of features and their relevance. Marketing and IT
were both at the table, and it became obvious that their disagreement
was foundational and way deeper than just software.

* Marketing felt that the website was content based with some ap-
plication functionality

e IT felt that the website was a line-of-business concern, with some
marketing functionality

When I gave voice to this framing, there was silence around the
room. Not because everyone agreed (if only), but because they real-
ized how far apart they were, and, eventually, that their views on it
could never be reconciled. They simply did not agree who owned the
website, which was a very basic point of contention.

1. In logic and debate, a “strawman argument” is when you twist your oppo-
nent’s actual position into something that's easier for you to discredit and dis-
mantle. You turn it into a “man made of straw,” which is easier to defeat.

100

Things You Should Know

IT had been deferring to Marketing, but if the organization was going
to spend six figures on a new software platform, IT considered that
an “enterprise software acquisition” and it wanted to control that de-
cision.

I call these “worldview” issues. These problems come from the most
basic lens of how you view your world, not from specifics about the
actual project. These issues can be so foundational that people don’t
even see them. You lose sight of the forest for the trees.

So often we hear the same argument from Marketing when investi-
gating a new CMS: “We need to be able to do things without having
to involve IT.” This means that organizational and governance dis-
agreements are so acute that Marketing is completely switching tech-
nology platforms as a solution.

In situations like this, I’ve often wondered if Marketing should just
have a set of developers assigned solely to them. So, Marketing
would have development talent they could manage and allocate
themselves.

When Marketing complains about having to involve IT, what they’re
really saying is that they don’t want to fight for human resources
amidst all the other concerns that IT is working on. If Marketing
can’t remove the bottleneck and become a priority, then it plans to
go around the bottleneck altogether. Purchasing enterprise software
and paying an outside firm to completely change the website is easier
than just getting a new job requisition or reassigning someone inter-
nally.

I’'m not claiming that every CMS purchase could be avoided, but
at least some portion is unnecessary, and here’s the worst part: they
often won’t even solve the organization’s problems. They’ll get a
new CMS, and they’ll either be arguing about the same problems, or
they’ll create new ones by introducing a new software stack and a
new expense to have a third party manage it.

No one wants to deal with human issues, because they’re frequently
messy and awkward. They can involve value and competency judg-

101

Lesson #22

ments about co-workers and existing work product, and they can
shift the balance of power (and budget) inside an organization. No
one wants to lose an area of responsibility because they’ve been eval-
uated as lacking in its management or execution.

The other problem with organizational issues goes back to humans’
love of novelty. Organizational and management issues can be easier
and lower cost to implement, but they’re...boring. They don’t involve
new software or tools.

Additionally, there’s always the unspoken question of why the orga-
nization didn’t fix the issues before. If someone has implied that new
software will make a situation better, then they’re also claiming that
not having the software is clearly the reason why the problem per-
sisted so long in the first place.

If an organizational change is proposed as the solution, it begs the
question of why the problem wasn’t fixed earlier, so we stay away
from that.

Patrick Lencioni wrote in The Advantage:

Most leaders prefer to look for answers where the light is bet-
ter®...and the light is certainly better in the measurable, objective,
and data-driven world...than in the messier, more unpredictable
world of organizational health.

In the end, it’s much easier to deflect and defer problems in search of
a software solution that will Make Everything Better™.,

Before you start on a software and services project, answer these
questions:

2. A reference to an old joke about a guy looking for his keys under a streetlight,
even though he lost them on the other side of the street. When someone asks
why, he responds, “Because the light is better over here.” The larger point is
that there’s a human tendency to contort actual problems into something that
we find easier or less awkward to solve.

102

Things You Should Know

* Who owns the purchasing decision for both software and ser-
vices?

* Who is responsible for the improved result the project is sup-
posed to bring about?

* Who has the resources — budgetary and human — to manage and
develop the new platform post-launch?

+ If the answers to the above questions are not the same person or
group...why not?

Cynically, neither vendors nor integrators should complain about this
state of affairs — it keeps us in business. Still, it’s tough to watch an
organization that just can’t get out of its own way. Great software and
a great implementation will wither and die in the face of organiza-
tional confusion and disagreements.

103

Lesson #23

Lesson #23

Launch day is not the finish line, it’s
the starting line

This book is about preparing to select software and services for your
digital transformation project. So, you’re preparing for the project
that comes before your actual project.

The actual implementation project might have a 6-9 month time-
frame. When you include selection, the entire project cycle might run
for over a year.

And then it’s finally done. Whew.
Just kidding. It’s not done. It’s never done.
The strict definition of a project is something that:
[...] is not a routine operation, but a specific set of operations de-

signed to accomplish a singular goal; a project is temporary in that
it has a defined beginning and end in time."

1. This definition was cobbled together from various resources offered by the
Project Management Institute.

104

Things You Should Know

The implementation of your website is a project, sure. Once it
launches, it becomes a product.

The companion to project management is product management, de-
fined as the maintenance and development of a set of features over
time. Your website project eventually becomes a product, which cre-
ates an entirely new set of challenges.

Customers often don’t plan for the day after launch. Once the website
launches, there’s usually some immediate clean-up and stabilization
issues to handle, but once things are running smoothly in production,
you’ll often lose several things:

N

Your budget will likely be slashed. The organization was proba-
bly pumping money into the project, but they expect to be able to
turn that flow off now.

You might have had extra staff working on the project, from a
variety of departments. They’re probably thankful to go back to
their regular work now.

If you hired one or more contractors to do the work, their role
might have ended with launch.

The attention of the executive-level at your organization might
have been focused on the project and prepared to fight organiza-
tional battles when called on. Now they consider it done and are
ready to check off that box and move on.

The entire organization might have had a general sense of ur-
gency and had banded together to get all the work done.

You might have even lost your own enthusiasm for the project.
It’s been a long haul, and now you’d just like to not think about
the website for a couple of months.?

Early in my career, | built the website for an NFL team. | spent month after
month in “death march” mode to get the project completed. For years after-
ward, the color combination of that particular team’s uniforms gave me low-

105

Lesson #23

The day after launch can feel like New Year’s Day in Times Square.
It’s obvious that some exciting things happened the night before, but
no one is left except the clean-up crews trying to get a handle on the
mess.

Customers tend to get “development tunnel vision” where you’re so
focused on getting to launch that they don’t consider what comes
after. Some projects never make the leap to a continuing, managed
product. They get launched to great fanfare, then just linger with no
subsequent progress.

Here are some things you need to consider:

» Features will get thrown overboard at the end of the project.
Some things just won’t make it under the schedule and budget,
and they’ll get pushed off to “Phase 2.” The day after launch, you
need to take stock of these things, and decide if you’re actually
going to execute a follow-on project for them.

* You might need new staff. Remember all the advantages you
promised the CEO so she would agree to the budget? Who is go-
ing to do all that stuff?

» Existing staff will need to be re-trained. Sure, you probably did
some training during the project, but when they sit down to work
with the system, they’ll have forgotten half of it, they’ll have new
questions, they’ll find edge cases, etc. It’s a great myth that train-
ing is a singular activity. It needs to be an ongoing program.

* You’ll need to work out support issues. The first time you have a
problem with the website, you’ll probably realize you didn’t plan
comprehensively enough — or at all. Do you have monitoring so
you even know a problem exists? Who is your first call? How
do you escalate? How do you communicate the issue internally?
What level of post-mortem will you require? What will you do

level anxiety.

106

Things You Should Know

with the resulting information?

* What happens when you want to make that first planned change?
You might not have your integrator anymore, nor all the develop-
ers that IT loaned you during the project. Who is going to do this
work? How do you get it authorized?

* You’ll need to develop new processes around the new function-
ality. All those new webforms you’re making — who is going to
route and respond to the resulting emails? Yes, personalization is
great, but who is going to maintain the rules? And can anyone in-
terpret all the new analytics?

* You’ll realize that some things just don’t work as well as you
thought. Some new features the CMS offered aren’t as great in
practice as they were in theory. Perhaps your staff can’t adapt to
them, or perhaps there are limitations that didn’t show up in the
demo. You’ll have to make decisions about whether to keep or
abandon them.

* Lots of people around the organization will have new ideas.
Some won’t like the changes. Others will be inspired by the new
website and platform, and they’ll want to get their pet project
started. How will you evaluate and prioritize these?

* You might be juggling new vendors. You’ll have the new CMS
vendor, and perhaps a continuing relationship with the integrator,
plus any number of subcontractors. How do you manage lines of
communication and accountability?

* You might have new budget management issues. A new website
can be an expensive thing to maintain, so you’ll need to plan your
spending around this Brave New World of tools, processes, and
organizations.

Understand that a project like the one you’re considering will proba-
bly create more work than it will resolve.

107

Lesson #23

There are certainly some situations where outdated technology was
creating work for your organization, and a good CMS and implemen-
tation can fix this. But what companies often find is that a new set
of functionality creates new work. The organization expects some re-
turn on its investment, so it’s going to want to see those new features
in use. Hopefully, the new work will be productive and provide ben-
efits to the organization, provided it’s staffed and managed compre-
hensively.

There’s nothing more demoralizing for an integrator than to get a
phone call from their customer a full year after launch asking, “Can
you show us how to log in to the CMS again?” At that moment, it be-
comes obvious that the customer considered the long-past launch day
to be the finish line for a project that they just wanted to end. And
that project never turned into a product that was actively managed
in a manner designed to manifest all the benefits that were promised
along the way.

You need to be constantly looking past launch day. What happens on
day two?

108

Things You Should Know

Lesson #24

A lot of results you’re promised will
require considerable effort from
humans

Vendors love to talk about salesly concepts like “digital transforma-
tion,” and they’ll show you amazing case studies of what people did
with their software. What they’ll gloss over is how much work this
will require from salaried human beings to make it happen.

This is true of anything. Humans can improve their tools, but they
still have to use them.

I’ve been a car guy my entire life. I would watch auto racing and
imagine how fun it would be to have a sports car I could toss around
like that.

And then my wife bought me a Porsche 911 for my 40th birthday,
and I quickly learned something: I just wasn’t that great of a driver.

I wasn’t afraid of spirited driving every once in a while, but the car’s
capabilities were way above my skill level. In fact, the car still has
the same set of winter tires it came with. Sometimes I’'m tempted to
buy higher-performance tires, then I remember that I’ve never even

109

Lesson #24

approached the outer limits of the snow tires, so I’d be buying capa-
bility I didn’t have the skill to get any real use out of.

To race a car requires (1) a capable car, and (2) a really good driver.
I only had one of those things. If it could, my Porsche would have
rolled its eyes whenever I sat in the driver’s seat.

When a vendor shows off a case study of how Customer X did some-
thing amazing, understand that this wasn’t done on autopilot. There’s
no magic switch or menu option that makes this happen. The soft-
ware was just a cog in a much larger machine, which included ade-
quate staffing, intelligent processes, and often external consultants.

If you’re considering software and services, this can be easier, be-
cause many integrators offer marketing strategy and operations ser-
vices to help you get this done — so the agency provides the people.
But everything has a price attached, and qualified people aren’t
cheap. For a large-scale marketing transformation, be prepared to
pay four- or five-figures per month after the implementation just to
run the software.

Some software vendors are even moving into this market. They’re
selling the services to run the product along with the license. It’s like
selling a car so complex that the customer has to lease a driver when
they buy it."

Any selling process is a zooming in and out of small scale and large
scale concepts. When talking about results, vendors will make large-
scale claims that often leave out a smaller-scale point: “Our software
provides a toolset of functionality which can be used by humans to
achieve larger goals. Our software is a necessary but not sufficient

1. | visited Hanoi, Vietnam a few years ago. This city is legendary for its traffic
and driving patterns. My host was from England, living in Vietnam temporarily.
She picked me up at the airport in her car, piloted by a Vietnamese driver. It
turned out that, for non-natives, the dealership sold the car and driver ser-
vices as a package, because driving in Hanoi is just that difficult.

110

Things You Should Know

tool to achieve this larger goal.” They’re assuming you will provide
the human skill to use the tool they’re selling you.

Be a little guarded when vendors speak of “experiences” and “jour-
neys.” What they’re saying is that their software is theoretically able
to help you do all this stuff...with considerable effort from humans —
you or other humans you are paying.

Remember that the software you’re examining probably has newer
features and functionality than what you have now. Almost by defi-
nition, it’s different than what you’re used to. If it wasn’t, then why
would you be considering a change? This being the case, you’re go-
ing to need to develop or buy new skills to use the software. The cur-
rent processes and skills you have might not be enough to run it.

For example, personalization is great, but are you really in a position
to perform a fine-grained analysis of all your audiences, figure out
how to identify them all, and create and maintain multiple versions
of all your content? Most organizations struggle to maintain one ver-
sion of their content, much less five or six.

Some customers believe their skill level and processes are far in ex-
cess of what their current software can support, and they need new
software to help them fill their potential.

And this is what humans do, naturally. We’re evaluating something
new, we project ourselves into a world where we’re competent pro-
fessionals who clearly need this amazing functionality. If a vendor
shows us a new feature, we want to be a professional who needs
that. We love the idea that this advanced technology will fulfill some
imagined “software gap” in how our current technology is not fulfill-
ing our needs — as if we’re so much further ahead.

And in our heads, this means we don’t need more people. The new
software just means our existing people can use the full array of their
skills. The software is the only puzzle piece missing.

Vendors perpetuate this. Not out of dishonesty, but purely because
they have no alternative. No vendor is going to tell a customer, “You

M

Lesson #24

aren’t nearly sophisticated enough to use this.” Don’t confuse ven-
dors with consultants or therapists — they’re not being paid to give
you the unvarnished truth about anything.

Certainly, some customers are being held back by a “software gap.”
But more often, this is not the case, and I’ve seen customers bite off
way more than they could chew by not considering the human ele-
ment required to get where they wanted to go. They found they could
never do any of the amazing things they were sold because they sim-
ply didn’t have the headcount or skillset necessary. Worse, new ca-
pabilities often had the effect of creating more work.

Many times, the gap is in human skills and capacity, not software.
Often, the customer isn’t even using their current software to its full
potential.

As the customer, it’s your job to be honest with yourself about what
your organization is capable of. Do you have the staff and skill nec-
essary to use all the tools you’re being sold to the level necessary to
justify the investment?

12

Things You Should Know

Lesson #25
Software is not your savior

Here’s a strong statement: in most cases, you are the biggest risk to
the successful completion of your project. Sure, projects sometimes
fail due to technology shortcomings or a bad integrator, but that’s far
less common than the customer being the ultimate source of why the
project didn’t fulfill its expectations.

But first, let’s talk a bit about the concept of “failure,” because it’s
not clear cut. We can actually divide it up into multiple types of fail-
ure.

* An Abortive failure means the project failed to complete or
launch at all. Sometimes, this isn’t even a failure. If you get 15%
into your project and realize it’s not going to work, canceling it at
that stage is the right decision and should probably be considered
a win.

* A Quantitative failure means the project launched, but failed on
some numeric metric, like budget or schedule. Usually, it cost too
much or took too long. These failures are very common (even ex-
pected, in many cases), but are recoverable. If something is late
or over-budget, but then goes on to succeed on every other met-
ric, then the sins of development will be quickly forgotten.

113

Lesson #25

* A failure of ROI or Goals means the project may have launched
on-schedule or within budget, but it never achieved the intended
end goal. These failures are sadly rare because to fail on metrics,
you have to have some, and few projects do. It’s rare that a cus-
tomer has identified the goals of their project in terms of numeric
values that can be tracked and compared, assuming you even had
a baseline to start with. So even if a project does fail on goals, the
goals are usually implied or assumed, so no one can tell for sure.

* Which leaves us with failures of Expectations. This is when
your project launches on-schedule and within budget, but there
were no goals or metrics to track. All you had were expectations.
Sometimes the project fulfills them and is considered a success
because no one feels let down, but other times, one or more peo-
ple assess the result after the dust has settled and say something
like, “I just thought it would be better than this” or “We still have
Problem X, and I thought the project was going to fix that.” Of-
ten, they won’t verbalize it at all, and it will remain felt yet un-
spoken.

Truth: A project’s “success” or “failure” is often chalked up to gut
feeling.

Six months after launch — just long enough for the novelty of a new
thing to wear off — a bunch of people are going to ask themselves,
“Are we any better off now than we were before?”” The answer to that
is then chalked up as success or failure.

And where does this gut feeling come from?

A lot of it is based on “perceived differential competence.” Organi-
zations will base their opinion of their own competence on what they
see other organizations doing. And since what organizations do is of-
ten hidden — it’s hard, for instance, to conclusively identify or evalu-
ate an A/B test being performed on you — then we often fall back to
what we think other organizations are doing.

114

Things You Should Know

And where do we get this fear from? Mainly from what other people
talk about. This means articles we read, case studies and white papers
we find on LinkedIn, conference presentations we sit through, and
reports that analysts write.

Facebook gave us FOMO — Fear of Missing Out — on a personal lev-
el. LinkedIn did the same thing professionally.

The problem is survivor bias, which says that history is written by
the victors — the only things that survive to be written and talked
about are the things that are interesting or that worked. No one writes
about the projects that didn’t accomplish anything interesting. No
one writes a post on LinkedIn that boils down to, “We tried this thing,
and it didn’t work.””

And so we chase stories of success. We run after the things people
are claim were successful when we have no firsthand knowledge of
what those actual results were or if they apply to our business. We
just want to resolve the fear that our competitors are doing more than
we are.

Steven Furtick is a pastor from North Carolina. He made a tweet
back in 2011 that has resonated with me ever since:

One reason we struggle with insecurity: we’re comparing our be-
hind the scenes to everyone else’s highlight reel.

Without a way to measure the results, any victory is hollow. We often
have no idea what end state we’re even looking for, much less how
to measure whether that made an impact on the state of the business.

1. This is well-known in the scientific community as “publication bias.” The only
experiments that get published are those which came to some clear conclu-
sion. This gives the impression that science is much more determinable than
it really is. For every paper in a peer-reviewed journal, there were likely sever-
al dozen experiments that yielded no clear conclusion and were therefore
never documented.

115

Lesson #25

External, marketing-focused initiatives are obvious, but we see this
play out internally as well. Content managers live in fear that their
content assets are “out of control.” They believe that, at any given
time, every single asset the organization owns should be in a con-
trolled state and subject to complete transparency. Content managers
want to get their arms around everything, because they’re convinced
this is the normal state that all their competitors are in.

There’s a corollary here with new parents. With your first baby, you
want to do everything “right.” You might not know why you’re buy-
ing organic diapers made from cotton fibers grown in the Brazilian
rainforest, but there was some article in a parenting magazine that
told you it was the “right” thing to do and that perfect couple down
the street does it, so you figure it’s normal.

When the second child comes, you’ve loosened up quite a bit. By the
time that fourth child rolls around, you’re just hoping they don’t eat
too much dirt when they play outside. And even that’s negotiable.

Digitally, this manifests in what I call “control fixations.” These are
things like:

* Dashboards and Reporting Tools: Customers will over-empha-
size these with the best of intentions, dreaming about the levels
of control and transparency they’ll enable. But even when this re-
porting exists, they hardly ever use it.

* Form Building: Customers want to be able to build highly com-
plex webforms — even to point of replacing line-of-business ap-
plications. In reality, they might only have 2-3 forms on the web-
site that hardly ever change.

* Multi-Site Management: Customers want to manage the entire
array of their organization’s digital presence from the same sys-
tem, when sometimes the right answer is just to run your tempo-
rary campaign microsite out of a separate CMS instance.

* Workflow Engines: Customers dream of control by automation,
with complex workflows routing content for approval and pub-

116

Things You Should Know

lication. Relatively few organizations (e.g. newspapers) push
enough content through a sufficiently skilled team that this
makes sense. For most, a simple, feature-thin system is better.

All of these feature studies speak to issues of control, and our fixa-
tion on it. We’re convinced that we’ll succeed by locking everything
down with perfect software. That’s the gap we just have to close.

But remember, don pin all your hopes on software. There are people
and process issues that need to be addressed inside your organization.
Too many customers will simply throw software at a problem, then
be upset when the software didn’t fix everything that ailed them.

In reality, any “digital transformation” — insofar as that term actually
means anything — is a combination of:
* A reasonable and clear vision of the desired end state
 Sufficient and appropriate technology
* The correct initial implementation of that technology

+ Sufficient ongoing support and expert consultation around that
technology

» Sufficient and ongoing training of the people who use that tech-
nology

» Correct oversight with ongoing budget allocation and clear exec-
utive support

And, most important of all —

« Constant evaluation and evolution of goals in the face of chang-
ing market conditions and organizational goals

Too many times, customers focus on the technology to the exclusion
of everything else. “The software will save us!” is the standard rally-

ing cry.

17

Lesson #25

When software myopia is combined with the unspoken and unac-
knowledged reasons why a customer is pursing the project in the first
place, that combination becomes the biggest threat. Customers are in
denial about what they want to accomplish and why, and have un-
realistic expectations of what raw software is going to do for them.
When the results don’t instantly duplicate what they’re reading about
in their LinkedIn timeline, they get a gut feeling that tells them the
project didn’t succeed.

Software is one part of a much larger landscape of solutions. Cus-
tomers need to be honest about their reasons for pursuing a change,
and realistic about its limits to improve an organization without the
support of a larger transformational effort.

That is the biggest risk to any project. And that starts and ends with
you.

118

Things You Should Know

Conclusion

This all feels very cynical, I know. And like I said in the introduction,
it’s a mix of procedural advice and human and social engineering.
You need to exist somewhere in between a project manager and or-
ganizational therapist.

Any software and services selection process is a mixture of organi-
zational need, human emotion, technical requirements, and business
realities. At the risk of drama, it’s a microcosm of the human condi-
tion all rolled up into six or eight weeks. It can be a roller coaster,
except that you have to live with the results for years.

To distill it all of this down to some general principles —

First, accept that it’s a messy, imperfect process that’s not defined by
a simple result of “success” or “failure.” You just do as well as you
can.

Technology selection will likely not doom your project, nor will it be
the single thing that causes it to succeed. It’s one factor among sever-
al others — in particular, people and processes — that all mix together
to move you along a spectrum.

Success or failure in these projects is not binary. You don’t even
“succeed” or “fail” in simple terms, as much as you arrive at a point
some distance to your goal.

119

Second, try to be humble and genuine. These processes feel adversar-
ial by nature, but lots of problems can be chalked up simply to peo-
ple — on both sides — posturing and bluffing. Know that you probably
can’t bluff as well as you think you can, and when this is revealed,
you’ll be in a worse position because of it. Be honest with vendors
and integrators, and clearly communicate with them about your con-
cerns and timelines.

Third, get help. If you’re not an experienced buyer, then find a con-
sultant to help you examine what you need, write the RFP, evaluate
the responses, and sit in on the demos.

Selection consultants don’t make the decision for you, they just help
you put a breathtaking amount of information in perspective, so you
can know what’s important and what’s less so. You can negotiate the
scope of the engagement, so you don’t need to worry they’ll take
over the entire process. If you just want some spot help, state that and
look for someone willing to engage on that level.

Looking back through this book, there’s one general analogy I’ve
used more than any other: marriage.

Dozens of times, I’ve compared the software evaluation process to
dating, the implementation to being engaged, and the system you’re
left with as marriage.

I’m reminded of a blog post written back in 2003 entitled “Why Con-
tent Management Systems Are Like Relationships.” It’s resonated
with me in the 17 years since.

Why Content Management Systems Are Like Relationships
* There comes a point in your life when you feel that you really

should be in one.

+ They’re expensive up front, and you never stop paying for
them.

* People who are already in them tend to be a bit superior about
being in one.

120

Things You Should Know

* Both aren’t that easy to get into and you wonder if you’re
choosing correctly — you’re sold this myth that there is “the
one” out there for you.

* When you get into one, you have to adapt your behavior to suit
your partner.

* Once you’re in one you miss the freedom that you have before
and you find it’s invariably more work which you fail to see
the need for.

* You’ll be scorned or ridiculed by people who don’t see the
point in them.

» After a few months of excitement, you realize that you’re ba-
sically doing everything that you were doing before.

* You occasionally have wow moments that make you realize it
was all worthwhile.

* You can only really use one, conflicts arise if others hang
around.

* Soon you notice new ones, and your affection begins to wan-
der — but the upheaval of changing is just too much to consider
moving on.

* After a while, keeping the set-up going becomes more im-
portant than anything you once thought you might get out of
them, or even put in.

» Having been in one, you need some time to recover before you
start your next.

Clearly, this post is dripping with cynicism,' but many of the things
written here echo points I’ve made throughout this book.

1. Also, given the timeframe it was written, the author is comparing using a CMS
to using static HTML, which might not be a valid comparison any longer.

121

In fact, let me quote from the same New York Times article that I
mentioned earlier:

We need to swap the romantic view for a tragic awareness that
every human will frustrate, anger, annoy, madden and disappoint
us — and we will do the same to them.

[...] We should learn to accommodate ourselves to “wrongness,”
striving always to adopt a more forgiving, humorous and kindly
perspective on its multiple examples in ourselves and in our part-
ners.

Why You Will Marry the Wrong Person
New York Times
May 28, 2016

You may be wondering why I’m finishing up the book with this, but
the reason should have been staring you in the face all along:

Nothing is perfect in this industry, and no software exists that will
magically meet your every need.

Instead you need to find a system and a service provider that comes
as close to all your needs, but is flexible enough to modify itself to
suit you in ways that are critical. And, in turn, you need to a take a
long look at your organization and be ready to accommodate some
software shortcomings, change some bad habits, and make another
modifications as necessary to fit the tool you select.

Anything less than that will leave you profoundly unhappy, while
you wait out the inevitably messy divorce sometime down the road,
and start the process all over again.

Do your best. Good luck.

122

Things You Should Know

Are There More Things You Should
Know?

Whenever you write a book, there’s a struggle to know when you’re
done. At any point, you have a dozen other things that you wonder if
you should include, and there are probably dozens more you’re not
thinking of.

My hope is that the book you’ve just finished is simply the first set
of things. A few lessons didn’t make the cut for this edition because |
couldn’t validate them past my own experience, or I couldn’t sharp-
en their definition clearly enough.

Additionally, you might be thinking right now: “I can’t believe he
didn’t talk about [insert your own situation here]!”

If this is the case, please reach out. I’d love for this book to spark a
dialogue among customers, vendors, integrators, and analysts about
other lessons I didn’t cover here. When I get enough, I’ll issue an-
other edition.

Let’s keep this conversation going. I’m all ears.

deane@deanebarker.net

123

Acknowledgements

Thanks to Episerver who agreed to publish this when most vendors
would have run the other way.

Thanks to Heather Boutwell who read the original document,
thought it would make a decent book, and became the champion and
cheerleader for the project.

Thanks to Amberly Dressler for her editing.

Thanks to Justin Anovick and Ed Barrow for giving me the keyboard
time to get it done.

Thanks for Sam Otis at Blend Interactive for his design.

And thanks to all the customers of Blend Interactive over the years
that gave me the lessons and experiences — both good and bad — that
I’ve written about here.

124

	Things You Should Know
	Table of Contents
	About the Author
	Introduction
	Applicability to Software Genres
	There is usually a familiar roster of players
	There is no “soulmate” for your project, and all that glitters will eventually lose its shine
	Sometimes you just can’t estimate ROI on your project
	Software usually has to fit into larger technology landscapes
	Internal IT groups can be territorial for a variety of reasons
	The relationship dynamics between the players are different
	There can be a blurry line between software and services
	Open-source software often has no representation
	There’s sometimes tension between the vendor and their partner integrator
	The most thorough selection processes are a funnel of deepening analysis
	A vendor’s ecosystem should be evaluated as a core feature
	A Request for Proposal can sometimes be abusive and this doesn’t help anyone
	Know your budget target in advance and be prepared to share it
	If you don’t know how to write an RFP, get help
	Scenario-based demos are helpful, but can be restricting
	Pay careful attention to how much vendors and integrators are willing to teach
	It’s easy to get excited about something new and interesting
	RFP responses are often a team effort of multiple providers, which can be confusing
	If you have no CMS experience, get help for your evaluations
	An adversarial relationship with your integrator is never helpful
	The lure of “out-of-the-box” functionality is usually misplaced and illusory
	Poor governance and vague ownership do far more damage than a lack of technology
	Launch day is not the finish line, it’s the starting line
	A lot of results you’re promised will require considerable effort from humans
	Software is not your savior
	Conclusion
	Are There More Things You Should Know?
	Acknowledgements

