Deel dit artikel
-

Ultrakoude elektronica om op diamant gebaseerde quantumbits aan te sturen

Onderzoekers van Fujitsu en QuTech hebben nieuwe en ultrakoude elektronica ontwikkeld om op diamant gebaseerde quantumbits aan te sturen. Als resultaat van hun gezamenlijke onderzoeksproject wordt het mogelijk om grotere quantumcomputers te bouwen door de ‘wiring bottleneck’ te overwinnen, met behoud van hoge kwaliteitsprestaties.

De functionele quantumcomputer van de toekomst zal miljoenen quantumbits, of ‘qubits’, bevatten. Ze zullen in staat zijn om complexe problemen veel sneller te verwerken dan klassieke computers, vooral op gebieden als cryptografie, optimalisatie en simulatie. Bovendien zullen ze in staat zijn om problemen op te lossen die onmogelijk zijn voor klassieke computers, wat een belangrijke mijlpaal is in de geschiedenis van de informatica.

Voordat het zover is, moeten er een paar uitdagingen overwonnen worden. Eén daarvan is het handhaven van de extreem lage temperatuur, waarbij de qubit normaal gesproken werkt. Qubits maken gebruik van extreem kwetsbare quantumeffecten die door veel dingen worden verstoord, zoals zelfs de kleinste hoeveelheid warmte. Daarom worden qubits afgekoeld tot de koudst mogelijke temperaturen, dicht bij het absolute nulpunt: 0 Kelvin (of -273°C).

Het is erg moeilijk om duizenden of zelfs miljoenen qubits aan te sluiten met evenzoveel draden die de koelkast uitkomen. Zoveel draden tussen de koude qubits en de elektronica op kamertemperatuur heeft een dramatische invloed op de betrouwbaarheid, de fabricage en de grootte van het apparaat.

Waarom niet de hele computer bevriezen, in plaats van alleen de qubits? Dat is makkelijker gezegd dan gedaan, omdat de meeste elektronica alleen bestand is tegen omgevingstemperaturen van -40°C tot +125°C, temperaturen die veel hoger liggen dan de temperatuur van de typische qubit. Maar dit is precies wat onderzoekers en ingenieurs van QuTech – een samenwerking tussen de TU Delft en TNO – deden. Ze gebruikten cryo-CMOS hardware om de extreme temperaturen van een qubit koelkast te weerstaan, zonder dat dit ten koste ging van de prestaties van het hele systeem en de schaalbaarheid.

Eerder bereikten de onderzoekers een cryogene controller voor spin-qubits in silicium. Hoewel die spin-qubits (in principe) samen met de cryogene elektronica in een standaard proces voor geïntegreerde circuits (bijv. CMOS) gefabriceerd kunnen worden, hebben de diamant-qubits die hier gebruikt worden een aantal andere voordelen. Ze hebben een betere natuurgetrouwheid, ze kunnen gemakkelijker op afstand met elkaar verbonden worden, waardoor er ruimte ontstaat voor elektronica in de buurt, en ze kunnen bij een (relatief) hogere temperatuur werken. De hogere werktemperatuur is vooral relevant voor de elektronica, omdat werken bij 1 kelvin (-272,15°C) moeilijk maar eenvoudiger is dan werken bij 0,020 kelvin.

Deel dit bericht

Plaats een reactie

Uw e-mailadres wordt niet op de site getoond